Your browser doesn't support javascript.
loading
State-dependent activity dynamics of hypothalamic stress effector neurons.
Ichiyama, Aoi; Mestern, Samuel; Benigno, Gabriel B; Scott, Kaela E; Allman, Brian L; Muller, Lyle; Inoue, Wataru.
Afiliación
  • Ichiyama A; Graduate Program in Neuroscience, Western University, London, Canada.
  • Mestern S; Graduate Program in Neuroscience, Western University, London, Canada.
  • Benigno GB; Department of Mathematics, Western University, London, Canada.
  • Scott KE; Brain and Mind Institute, Western University, London, Canada.
  • Allman BL; Graduate Program in Neuroscience, Western University, London, Canada.
  • Muller L; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Canada.
  • Inoue W; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Canada.
Elife ; 112022 06 30.
Article en En | MEDLINE | ID: mdl-35770968
ABSTRACT
The stress response necessitates an immediate boost in vital physiological functions from their homeostatic operation to an elevated emergency response. However, the neural mechanisms underlying this state-dependent change remain largely unknown. Using a combination of in vivo and ex vivo electrophysiology with computational modeling, we report that corticotropin releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN), the effector neurons of hormonal stress response, rapidly transition between distinct activity states through recurrent inhibition. Specifically, in vivo optrode recording shows that under non-stress conditions, CRHPVN neurons often fire with rhythmic brief bursts (RB), which, somewhat counterintuitively, constrains firing rate due to long (~2 s) interburst intervals. Stressful stimuli rapidly switch RB to continuous single spiking (SS), permitting a large increase in firing rate. A spiking network model shows that recurrent inhibition can control this activity-state switch, and more broadly the gain of spiking responses to excitatory inputs. In biological CRHPVN neurons ex vivo, the injection of whole-cell currents derived from our computational model recreates the in vivo-like switch between RB and SS, providing direct evidence that physiologically relevant network inputs enable state-dependent computation in single neurons. Together, we present a novel mechanism for state-dependent activity dynamics in CRHPVN neurons.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Núcleo Hipotalámico Paraventricular / Hormona Liberadora de Corticotropina Tipo de estudio: Prognostic_studies Idioma: En Revista: Elife Año: 2022 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Núcleo Hipotalámico Paraventricular / Hormona Liberadora de Corticotropina Tipo de estudio: Prognostic_studies Idioma: En Revista: Elife Año: 2022 Tipo del documento: Article País de afiliación: Canadá