Your browser doesn't support javascript.
loading
Boosting the photocatalytic performance of Bi2Fe4O9 through formation of Z-scheme heterostructure with In2S3: Applications towards water decontamination.
Das, Krishnendu; Bariki, Ranjit; Pradhan, Sibun Kumar; Majhi, Dibyananda; Dash, Priyanka; Mishra, Abtar; Dhiman, Rohan; Nayak, Bismita; Mishra, B G.
Afiliación
  • Das K; Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.
  • Bariki R; Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.
  • Pradhan SK; Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.
  • Majhi D; Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.
  • Dash P; Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
  • Mishra A; Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
  • Dhiman R; Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
  • Nayak B; Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
  • Mishra BG; Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India. Electronic address: brajam@nitrkl.ac.in.
Chemosphere ; 306: 135600, 2022 Nov.
Article en En | MEDLINE | ID: mdl-35809748
ABSTRACT
Design of biocompatible nano-heterostructure photocatalyst with broad UV-visible spectrum response and strong redox ability is a promising approach with potential application in micropollutant degradation and pathogen deactivation from aqueous sources. Herein, we have reported the facile fabrication of In2S3/Bi2Fe4O9 (ISxBFO) binary heterostructure by hydrothermally depositing In2S3 nanoparticles (20-40 nm) over Bi2Fe4O9 nanocuboids/nanoplates prepared by combustion synthesis route. In depth characterization study revealed broad spectrum UV-Vis absorption, large interfacial contact, improved charge carrier separation and mobility and a longer excited state life time (4.7 ns) for the ISxBFO heterostructure materials. The integration of In2S3 with Bi2Fe4O9 strongly boosts the optoelectrical and photocatalytic property of pristine Bi2Fe4O9. The ISxBFO heterostructure material exhibited enhanced photocatalytic efficiency for aqueous phase degradation of sulfamethoxazole antibiotics (kapp = 0.06 min-1) and phenyl urea herbicides (kapp = 0.028 min-1) with reaction rates 3-8 times higher than the pure BFO component. The MTT assay experiments confirmed non-cytotoxic nature of treated sulfamethoxazole and diuron solutions. The composite materials also displayed convincing antibacterial behavior towards toxigenic Vibrio cholerae pathogen. Haemagglutination assay study revealed excellent biocompatibility of the binary composite up to 200 mg L-1. Radical trapping study suggested expeditious generation of •OH and •O2- radicals over the ISxBFO surface which is nearly 3.8 and 2.3 times higher than pure BFO and In2S3 respectively. The occurrence of a direct Z-scheme mechanism is inferred from radical trapping and XPS study which accounted for the improved photocatalytic activity and strong radical generation property of the ISxBFO heterostructure material.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Agua / Descontaminación Idioma: En Revista: Chemosphere Año: 2022 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Agua / Descontaminación Idioma: En Revista: Chemosphere Año: 2022 Tipo del documento: Article País de afiliación: India