Your browser doesn't support javascript.
loading
An enhanced multi-modal brain graph network for classifying neuropsychiatric disorders.
Liu, Liangliang; Wang, Yu-Ping; Wang, Yi; Zhang, Pei; Xiong, Shufeng.
Afiliación
  • Liu L; College of Information and Management Science, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China. Electronic address: liangliu@henau.edu.cn.
  • Wang YP; Dthe Biomedical Engineering Department, Tulane University, New Orleans, LA 70118, USA.
  • Wang Y; College of Information and Management Science, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China.
  • Zhang P; College of Information and Management Science, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China.
  • Xiong S; College of Information and Management Science, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China.
Med Image Anal ; 81: 102550, 2022 10.
Article en En | MEDLINE | ID: mdl-35872360
It has been proven that neuropsychiatric disorders (NDs) can be associated with both structures and functions of brain regions. Thus, data about structures and functions could be usefully combined in a comprehensive analysis. While brain structural MRI (sMRI) images contain anatomic and morphological information about NDs, functional MRI (fMRI) images carry complementary information. However, efficient extraction and fusion of sMRI and fMRI data remains challenging. In this study, we develop an enhanced multi-modal graph convolutional network (MME-GCN) in a binary classification between patients with NDs and healthy controls, based on the fusion of the structural and functional graphs of the brain region. First, based on the same brain atlas, we construct structural and functional graphs from sMRI and fMRI data, respectively. Second, we use machine learning to extract important features from the structural graph network. Third, we use these extracted features to adjust the corresponding edge weights in the functional graph network. Finally, we train a multi-layer GCN and use it in binary classification task. MME-GCN achieved 93.71% classification accuracy on the open data set provided by the Consortium for Neuropsychiatric Phenomics. In addition, we analyzed the important features selected from the structural graph and verified them in the functional graph. Using MME-GCN, we found several specific brain connections important to NDs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Imagen por Resonancia Magnética Límite: Humans Idioma: En Revista: Med Image Anal Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Imagen por Resonancia Magnética Límite: Humans Idioma: En Revista: Med Image Anal Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2022 Tipo del documento: Article