Your browser doesn't support javascript.
loading
Exploring Gut Microenvironment in Colorectal Patient with Dual-Omics Platform: A Comparison with Adenomatous Polyp or Occult Blood.
Wei, Po-Li; Wu, Ming-Shun; Huang, Chun-Kai; Ho, Yi-Hsien; Hung, Ching-Sheng; Lin, Ying-Chin; Tsao, Mei-Fen; Lin, Jung-Chun.
Afiliación
  • Wei PL; Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan.
  • Wu MS; Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan.
  • Huang CK; Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan.
  • Ho YH; Department of Surgery, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
  • Hung CS; Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan.
  • Lin YC; Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
  • Tsao MF; Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
  • Lin JC; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
Biomedicines ; 10(7)2022 Jul 19.
Article en En | MEDLINE | ID: mdl-35885045
ABSTRACT
The gut mucosa is actively absorptive and functions as the physical barrier to separate the gut ecosystem from host. Gut microbiota-utilized or food-derived metabolites are closely relevant to the homeostasis of the gut epithelial cells. Recent studies widely suggested the carcinogenic impact of gut dysbiosis or altered metabolites on the development of colorectal cancer (CRC). In this study, liquid chromatography coupled-mass spectrometry and long-read sequencing was applied to identify gut metabolites and microbiomes with statistically discriminative abundance in CRC patients (n = 20) as compared to those of a healthy group (n = 60) ofenrolled participants diagnosed with adenomatous polyp (n = 67) or occult blood (n = 40). In total, alteration in the relative abundance of 90 operational taxonomic units (OTUs) and 45 metabolites were identified between recruited CRC patients and healthy participants. Among the candidates, the gradual increases in nine OTUs or eight metabolites were identified in healthy participants, patients diagnosed with occult blood and adenomatous polyp, and CRC patients. The random forest regression model constructed with five OTUs or four metabolites achieved a distinct classification potential to differentially discriminate the presence of CRC (area under the ROC curve (AUC) = 0.998 or 0.975) from the diagnosis of adenomatous polyp (AUC = 0.831 or 0.777), respectively. These results provide the validity of CRC-associated markers, including microbial communities and metabolomic profiles across healthy and related populations toward the early screening or diagnosis of CRC.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Biomedicines Año: 2022 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Biomedicines Año: 2022 Tipo del documento: Article País de afiliación: Taiwán