Your browser doesn't support javascript.
loading
Photothermal effect of indocyanine green modified scaffold inhibits oral squamous cell carcinoma and promotes wound healing.
Fan, Yaru; Li, Fengji; Zou, Huiru; Xu, Zhaoyuan; Liu, Han; Luo, Rui; Zhang, Guanmeng; Li, Ruixin; Yan, Yingbin; Liu, Hao.
Afiliación
  • Fan Y; Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China; School of Stomatology, Tianjin Medical University, 22 Qi-xiang-tai Road, Heping District, Tianjin 300070, Chi
  • Li F; Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China; School of Stomatology, Tianjin Medical University, 22 Qi-xiang-tai Road, Heping District, Tianjin 300070, Chi
  • Zou H; Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China.
  • Xu Z; Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China.
  • Liu H; Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China.
  • Luo R; Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China.
  • Zhang G; Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China.
  • Li R; Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China. Electronic address: limxinxin@163.com.
  • Yan Y; Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China. Electronic address: yingbinyan@qq.com.
  • Liu H; Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China. Electronic address: Kqlh2013@163.com.
Biomater Adv ; 137: 212811, 2022 Jun.
Article en En | MEDLINE | ID: mdl-35929250
ABSTRACT
As the most prevalent malignant tumor of the oral and maxillofacial regions, squamous cell carcinoma (SCC) has relatively high recurrence and low survival rates. Currently, the most common treatment strategies are surgery and chemoradiotherapy. However, incomplete removal of the tumor can allow residual tumor cells to regrow and metastasis, resulting in treatment failure. Although postoperative adjuvant radiotherapy or chemotherapy can reduce recurrence, serious adverse reactions significantly compromise patients' quality of life. Large soft tissue defects after surgery are also difficult to heal. Therefore, therapies that eliminate residual tumor cells and promote tissue regeneration post-surgery are urgently needed. Indocyanine green (ICG) can convert absorbed light into heat to ablate tumor cells. Three-dimensional (3D) scaffolds are efficient drug carriers and support cell migration and proliferation. Here, we fabricated collagen/silk fibroin encapsulated ICG (I-CS) scaffolds by combining 3D printing with freeze-drying methods. The I-CS scaffolds delayed ICG decomposition and clearance, allowing the scaffolds to be used repeatedly for photothermal therapy (PTT). With the laser positioned at 4 cm from the 1.0 I-CS scaffold and irradiation for 10 min (1.0 W/cm2), temperatures above 50 °C were achieved, which effectively killed SCC-25 cells in vitro and suppressed tumor growth in vivo. Moreover, the I-CS scaffolds supported attachment and proliferation of rat buccal mucosa fibroblasts (RBMFs) and promoted the repair of buccal mucosal wounds in rats. These results suggested that I-CS scaffolds may be useful in preventing local recurrence and support regeneration of large soft tissue defects after oral SCC surgery.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias de la Boca / Carcinoma de Células Escamosas / Neoplasias de Cabeza y Cuello Límite: Animals Idioma: En Revista: Biomater Adv Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias de la Boca / Carcinoma de Células Escamosas / Neoplasias de Cabeza y Cuello Límite: Animals Idioma: En Revista: Biomater Adv Año: 2022 Tipo del documento: Article