Your browser doesn't support javascript.
loading
Genome-Wide Identification and Validation of Gene Expression Biomarkers in the Diagnosis of Ovarian Serous Cystadenocarcinoma.
Zalfa, Francesca; Perrone, Maria Grazia; Ferorelli, Savina; Laera, Luna; Pierri, Ciro Leonardo; Tolomeo, Anna; Dimiccoli, Vincenzo; Perrone, Giuseppe; De Grassi, Anna; Scilimati, Antonio.
Afiliación
  • Zalfa F; Predictive Molecular Diagnostic Unit, Pathology Department, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy.
  • Perrone MG; Microscopic and Ultrastructural Anatomy Unit, CIR, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy.
  • Ferorelli S; Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy.
  • Laera L; Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy.
  • Pierri CL; Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari "Aldo Moro", 70125 Bari, Italy.
  • Tolomeo A; Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari "Aldo Moro", 70125 Bari, Italy.
  • Dimiccoli V; Department of ITELPHARMA, ITEL Telecomunicazioni S.R.L., 70037 Ruvo di Puglia, Italy.
  • Perrone G; Department of ITELPHARMA, ITEL Telecomunicazioni S.R.L., 70037 Ruvo di Puglia, Italy.
  • De Grassi A; Pathology Department, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy.
  • Scilimati A; Pathology Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy.
Cancers (Basel) ; 14(15)2022 Aug 02.
Article en En | MEDLINE | ID: mdl-35954427
Ovarian cancer is the second most prevalent gynecologic malignancy, and ovarian serous cystadenocarcinoma (OSCA) is the most common and lethal subtype of ovarian cancer. Current screening methods have strong limits on early detection, and the majority of OSCA patients relapse. In this work, we developed and cross-validated a method for detecting gene expression biomarkers able to discriminate OSCA tissues from healthy ovarian tissues and other cancer types with high accuracy. A preliminary ranking-based approach was applied, resulting in a panel of 41 over-expressed genes in OSCA. The RNA quantity gene expression of the 41 selected genes was then cross-validated by using NanoString nCounter technology. Moreover, we showed that the RNA quantity of eight genes (ADGRG1, EPCAM, ESRP1, MAL2, MYH14, PRSS8, ST14 and WFDC2) discriminates each OSCA sample from each healthy sample in our data set with sensitivity of 100% and specificity of 100%. For the other three genes (MUC16, PAX8 and SOX17) in combination, their RNA quantity may distinguish OSCA from other 29 tumor types.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Screening_studies Idioma: En Revista: Cancers (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Screening_studies Idioma: En Revista: Cancers (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Italia