Development and Validation of a Model to Identify Critical Brain Injuries Using Natural Language Processing of Text Computed Tomography Reports.
JAMA Netw Open
; 5(8): e2227109, 2022 08 01.
Article
en En
| MEDLINE
| ID: mdl-35972739
Importance: Clinical text reports from head computed tomography (CT) represent rich, incompletely utilized information regarding acute brain injuries and neurologic outcomes. CT reports are unstructured; thus, extracting information at scale requires automated natural language processing (NLP). However, designing new NLP algorithms for each individual injury category is an unwieldy proposition. An NLP tool that summarizes all injuries in head CT reports would facilitate exploration of large data sets for clinical significance of neuroradiological findings. Objective: To automatically extract acute brain pathological data and their features from head CT reports. Design, Setting, and Participants: This diagnostic study developed a 2-part named entity recognition (NER) NLP model to extract and summarize data on acute brain injuries from head CT reports. The model, termed BrainNERD, extracts and summarizes detailed brain injury information for research applications. Model development included building and comparing 2 NER models using a custom dictionary of terms, including lesion type, location, size, and age, then designing a rule-based decoder using NER outputs to evaluate for the presence or absence of injury subtypes. BrainNERD was evaluated against independent test data sets of manually classified reports, including 2 external validation sets. The model was trained on head CT reports from 1152 patients generated by neuroradiologists at the Yale Acute Brain Injury Biorepository. External validation was conducted using reports from 2 outside institutions. Analyses were conducted from May 2020 to December 2021. Main Outcomes and Measures: Performance of the BrainNERD model was evaluated using precision, recall, and F1 scores based on manually labeled independent test data sets. Results: A total of 1152 patients (mean [SD] age, 67.6 [16.1] years; 586 [52%] men), were included in the training set. NER training using transformer architecture and bidirectional encoder representations from transformers was significantly faster than spaCy. For all metrics, the 10-fold cross-validation performance was 93% to 99%. The final test performance metrics for the NER test data set were 98.82% (95% CI, 98.37%-98.93%) for precision, 98.81% (95% CI, 98.46%-99.06%) for recall, and 98.81% (95% CI, 98.40%-98.94%) for the F score. The expert review comparison metrics were 99.06% (95% CI, 97.89%-99.13%) for precision, 98.10% (95% CI, 97.93%-98.77%) for recall, and 98.57% (95% CI, 97.78%-99.10%) for the F score. The decoder test set metrics were 96.06% (95% CI, 95.01%-97.16%) for precision, 96.42% (95% CI, 94.50%-97.87%) for recall, and 96.18% (95% CI, 95.151%-97.16%) for the F score. Performance in external institution report validation including 1053 head CR reports was greater than 96%. Conclusions and Relevance: These findings suggest that the BrainNERD model accurately extracted acute brain injury terms and their properties from head CT text reports. This freely available new tool could advance clinical research by integrating information in easily gathered head CT reports to expand knowledge of acute brain injury radiographic phenotypes.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Procesamiento de Lenguaje Natural
/
Lesiones Encefálicas
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
JAMA Netw Open
Año:
2022
Tipo del documento:
Article