Your browser doesn't support javascript.
loading
Genomic Prediction for Abortion in Lactating Holstein Dairy Cows.
Wijma, Robert; Weigel, Daniel J; Vukasinovic, Natascha; Gonzalez-Peña, Dianelys; McGovern, Shaileen P; Fessenden, Brenda C; McNeel, Anthony K; Di Croce, Fernando A.
Afiliación
  • Wijma R; Zoetis Inc., 333 Portage Street, Kalamazoo, MI 49007, USA.
  • Weigel DJ; Zoetis Inc., 333 Portage Street, Kalamazoo, MI 49007, USA.
  • Vukasinovic N; Zoetis Inc., 333 Portage Street, Kalamazoo, MI 49007, USA.
  • Gonzalez-Peña D; Zoetis Inc., 333 Portage Street, Kalamazoo, MI 49007, USA.
  • McGovern SP; Zoetis Inc., 333 Portage Street, Kalamazoo, MI 49007, USA.
  • Fessenden BC; Zoetis Inc., 333 Portage Street, Kalamazoo, MI 49007, USA.
  • McNeel AK; Zoetis Inc., 333 Portage Street, Kalamazoo, MI 49007, USA.
  • Di Croce FA; Zoetis Inc., 333 Portage Street, Kalamazoo, MI 49007, USA.
Animals (Basel) ; 12(16)2022 Aug 15.
Article en En | MEDLINE | ID: mdl-36009669
ABSTRACT
Abortion in dairy cattle causes great economic losses due to reduced animal health, increase in culling rates, reduction in calf production, and milk yield, among others. Although the etiology of abortions can be of various origins, previous research has shown a genetic component. The objectives of this study were to (1) describe the development of the genomic prediction for cow abortions in lactating Holstein dairy cattle based on producer-recorded data and ssGBLUP methodology and (2) evaluate the efficacy of genomic predictions for cow abortions in commercial herds of US Holstein cows using data from herds that do not contribute phenotypic information to the evaluation. We hypothesized that cows with greater genomic predictions for cow abortions (Z_Abort STA) would have a reduced incidence of abortion. Phenotypic data on abortions, pedigree, and genotypes were collected directly from commercial dairy producers upon obtaining their permission. Abortion was defined as the loss of a confirmed pregnancy after 42 and prior to 260 days of gestation, treated as a binary outcome (0, 1), and analyzed using a threshold model. Data from a different subset of animals were used to test the efficacy of the prediction. The additive genetic variance for the cow abortion trait (Z_Abort) was 0.1235 and heritability was 0.0773. For all animals with genotypes (n = 1,662,251), mean reliability was 42%, and genomic predicted transmitting abilities (gPTAs) ranged from −8.8 to 12.4. Z_Abort had a positive correlation with cow and calf health traits and reproductive traits, and a negative correlation with production traits. Z_Abort effectively identified cows with a greater or lesser risk of abortion (16.6% vs. 11.0% for the worst and best genomics groups, respectively; p < 0.0001). The inclusion of cow abortion genomic predictions in a multi-trait selection index would allow dairy producers and consultants to reduce the incidence of abortion and to select high-producing, healthier, and more profitable cows.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Animals (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Animals (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos