Your browser doesn't support javascript.
loading
Digital Light 3D Printing of PEDOT-Based Photopolymerizable Inks for Biosensing.
Lopez-Larrea, Naroa; Criado-Gonzalez, Miryam; Dominguez-Alfaro, Antonio; Alegret, Nuria; Agua, Isabel Del; Marchiori, Bastien; Mecerreyes, David.
Afiliación
  • Lopez-Larrea N; POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 San Sebastián, Spain.
  • Criado-Gonzalez M; POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 San Sebastián, Spain.
  • Dominguez-Alfaro A; POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 San Sebastián, Spain.
  • Alegret N; Carbon Bionanotechnology Group, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Spain.
  • Agua ID; IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, Paseo Dr. Begiristain s/n, 20014 San Sebastian, Spain.
  • Marchiori B; Panaxium SAS, Aix-en-Provence 13100, France.
  • Mecerreyes D; Panaxium SAS, Aix-en-Provence 13100, France.
ACS Appl Polym Mater ; 4(9): 6749-6759, 2022 Sep 09.
Article en En | MEDLINE | ID: mdl-36119408
3D conductive materials such as polymers and hydrogels that interface between biology and electronics are actively being researched for the fabrication of bioelectronic devices. In this work, short-time (5 s) photopolymerizable conductive inks based on poly(3,4-ethylenedioxythiophene) (PEDOT):polystyrene sulfonate (PSS) dispersed in an aqueous matrix formed by a vinyl resin, poly(ethylene glycol) diacrylate (PEGDA) with different molecular weights (M n = 250, 575, and 700 Da), ethylene glycol (EG), and a photoinitiator have been optimized. These inks can be processed by Digital Light 3D Printing (DLP) leading to flexible and shape-defined conductive hydrogels and dry conductive PEDOTs, whose printability resolution increases with PEGDA molecular weight. Besides, the printed conductive PEDOT-based hydrogels are able to swell in water, exhibiting soft mechanical properties (Young's modulus of ∼3 MPa) similar to those of skin tissues and good conductivity values (10-2 S cm-1) for biosensing. Finally, the printed conductive hydrogels were tested as bioelectrodes for human electrocardiography (ECG) and electromyography (EMG) recordings, showing a long-term activity, up to 2 weeks, and enhanced detection signals compared to commercial Ag/AgCl medical electrodes for health monitoring.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Polym Mater Año: 2022 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Polym Mater Año: 2022 Tipo del documento: Article País de afiliación: España