Study on Tritium and Iodine Species Transport through Porous Granite: A Non-Sorption Effect by Anion Exclusion.
Toxics
; 10(9)2022 Sep 16.
Article
en En
| MEDLINE
| ID: mdl-36136505
The safety of deep geological repositories is important in the disposal of high-level radioactive waste (HLW). In this study, advection−dispersion experiments were designed to build a transport model through a calibration/validation process, and the transport behavior of tritiated water (HTO) and various iodine species (iodide: I− and iodate: IO3−) was studied on a dynamic compacted granite column. Breakthrough curves (BTCs) were plotted under various flow rates (1−5 mL/min). BTCs showed that the non-sorption effect by anion exclusion was observed only in I− transport because the retardation factor (R) of I− was lower than that of HTO (R = 1). Moreover, equilibrium and nonequilibrium transport models were used and compared to identify the mobile/immobile zones in the compacted granite column. The anion exclusion effect was influenced by the immobile zones in the column. The non-sorption effect by anion exclusion (R < 1) was only observed for I− at 5.0 ± 0.2 mL/min flow rate, and a relatively higher Coulomb's repulsive force may be caused by the smaller hydration radius of I−(3.31 Å) than that of IO3−(3.74 Å).
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Toxics
Año:
2022
Tipo del documento:
Article
País de afiliación:
China