Your browser doesn't support javascript.
loading
Industrial Soft Sensor Optimized by Improved PSO: A Deep Representation-Learning Approach.
Severino, Alcemy Gabriel Vitor; de Lima, Jean Mário Moreira; de Araújo, Fábio Meneghetti Ugulino.
Afiliación
  • Severino AGV; Computer Engineering and Automation Department, Federal University of Rio Grande do Norte, 3000 Senador Salgado Filho Avenue, Natal 59078-970, RN, Brazil.
  • de Lima JMM; Computer Engineering and Automation Department, Federal University of Rio Grande do Norte, 3000 Senador Salgado Filho Avenue, Natal 59078-970, RN, Brazil.
  • de Araújo FMU; Computer Engineering and Automation Department, Federal University of Rio Grande do Norte, 3000 Senador Salgado Filho Avenue, Natal 59078-970, RN, Brazil.
Sensors (Basel) ; 22(18)2022 Sep 13.
Article en En | MEDLINE | ID: mdl-36146235
Soft sensors based on deep learning approaches are growing in popularity due to their ability to extract high-level features from training, improving soft sensors' performance. In the training process of such a deep model, the set of hyperparameters is critical to archive generalization and reliability. However, choosing the training hyperparameters is a complex task. Usually, a random approach defines the set of hyperparameters, which may not be adequate regarding the high number of sets and the soft sensing purposes. This work proposes the RB-PSOSAE, a Representation-Based Particle Swarm Optimization with a modified evaluation function to optimize the hyperparameter set of a Stacked AutoEncoder-based soft sensor. The evaluation function considers the mean square error (MSE) of validation and the representation of the features extracted through mutual information (MI) analysis in the pre-training step. By doing this, the RB-PSOSAE computes hyperparameters capable of supporting the training process to generate models with improved generalization and relevant hidden features. As a result, the proposed method can generate more than 16.4% improvement in RMSE compared to another standard PSO-based method and, in some cases, more than 50% improvement compared to traditional methods applied to the same real-world nonlinear industrial process. Thus, the results demonstrate better prediction performance than traditional and state-of-the-art methods.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Redes Neurales de la Computación Tipo de estudio: Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Brasil

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Redes Neurales de la Computación Tipo de estudio: Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Brasil