Your browser doesn't support javascript.
loading
A Comprehensive Survey of Depth Completion Approaches.
Khan, Muhammad Ahmed Ullah; Nazir, Danish; Pagani, Alain; Mokayed, Hamam; Liwicki, Marcus; Stricker, Didier; Afzal, Muhammad Zeshan.
Afiliación
  • Khan MAU; Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany.
  • Nazir D; Mindgarage, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany.
  • Pagani A; German Research Institute for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany.
  • Mokayed H; Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany.
  • Liwicki M; Mindgarage, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany.
  • Stricker D; German Research Institute for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany.
  • Afzal MZ; German Research Institute for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany.
Sensors (Basel) ; 22(18)2022 Sep 14.
Article en En | MEDLINE | ID: mdl-36146318
Depth maps produced by LiDAR-based approaches are sparse. Even high-end LiDAR sensors produce highly sparse depth maps, which are also noisy around the object boundaries. Depth completion is the task of generating a dense depth map from a sparse depth map. While the earlier approaches focused on directly completing this sparsity from the sparse depth maps, modern techniques use RGB images as a guidance tool to resolve this problem. Whilst many others rely on affinity matrices for depth completion. Based on these approaches, we have divided the literature into two major categories; unguided methods and image-guided methods. The latter is further subdivided into multi-branch and spatial propagation networks. The multi-branch networks further have a sub-category named image-guided filtering. In this paper, for the first time ever we present a comprehensive survey of depth completion methods. We present a novel taxonomy of depth completion approaches, review in detail different state-of-the-art techniques within each category for depth completion of LiDAR data, and provide quantitative results for the approaches on KITTI and NYUv2 depth completion benchmark datasets.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Qualitative_research Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Qualitative_research Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Alemania