Your browser doesn't support javascript.
loading
Combining CRISPR-Cas9 and brain imaging to study the link from genes to molecules to networks.
Marciano, Sabina; Ionescu, Tudor M; Saw, Ran Sing; Cheong, Rachel Y; Kirik, Deniz; Maurer, Andreas; Pichler, Bernd J; Herfert, Kristina.
Afiliación
  • Marciano S; Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
  • Ionescu TM; Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
  • Saw RS; Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
  • Cheong RY; Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, 22100 Lund, Sweden.
  • Kirik D; Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, 22100 Lund, Sweden.
  • Maurer A; Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
  • Pichler BJ; Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
  • Herfert K; Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
Proc Natl Acad Sci U S A ; 119(40): e2122552119, 2022 10 04.
Article en En | MEDLINE | ID: mdl-36161926
ABSTRACT
Receptors, transporters, and ion channels are important targets for therapy development in neurological diseases, but their mechanistic role in pathogenesis is often poorly understood. Gene editing and in vivo imaging approaches will help to identify the molecular and functional role of these targets and the consequence of their regional dysfunction on the whole-brain level. We combine CRISPR-Cas9 gene editing with in vivo positron emission tomography (PET) and functional MRI (fMRI) to investigate the direct link between genes, molecules, and the brain connectome. The extensive knowledge of the Slc18a2 gene encoding the vesicular monoamine transporter (VMAT2), involved in the storage and release of dopamine, makes it an excellent target for studying the gene network relationships while structurally preserving neuronal integrity and function. We edited the Slc18a2 in the substantia nigra pars compacta of adult rats and used in vivo molecular imaging besides behavioral, histological, and biochemical assessments to characterize the CRISPR-Cas9-mediated VMAT2 knockdown. Simultaneous PET/fMRI was performed to investigate molecular and functional brain alterations. We found that stage-specific adaptations of brain functional connectivity follow the selective impairment of presynaptic dopamine storage and release. Our study reveals that recruiting different brain networks is an early response to the dopaminergic dysfunction preceding neuronal cell loss. Our combinatorial approach is a tool to investigate the impact of specific genes on brain molecular and functional dynamics, which will help to develop tailored therapies for normalizing brain function.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Dopamina / Proteínas de Transporte Vesicular de Monoaminas / Neuronas Dopaminérgicas / Neuroimagen / Sistemas CRISPR-Cas Límite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Dopamina / Proteínas de Transporte Vesicular de Monoaminas / Neuronas Dopaminérgicas / Neuroimagen / Sistemas CRISPR-Cas Límite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2022 Tipo del documento: Article País de afiliación: Alemania