Your browser doesn't support javascript.
loading
Halogenated Zn2+ Solvation Structure for Reversible Zn Metal Batteries.
Zhang, Qiu; Ma, Yilin; Lu, Yong; Ni, Youxuan; Lin, Liu; Hao, Zhenkun; Yan, Zhenhua; Zhao, Qing; Chen, Jun.
Afiliación
  • Zhang Q; Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
  • Ma Y; Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
  • Lu Y; Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
  • Ni Y; Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
  • Lin L; Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
  • Hao Z; Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
  • Yan Z; Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
  • Zhao Q; Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
  • Chen J; Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
J Am Chem Soc ; 144(40): 18435-18443, 2022 Oct 12.
Article en En | MEDLINE | ID: mdl-36170558
Rechargeable aqueous Zn metal batteries have become promising candidates for large-scale electrochemical energy storage owing to their high safety and affordable low cost. However, Zn metal anode suffers from dendritic growth and hydrogen evolution reaction (HER), deteriorating the electrochemical performance. Here, we demonstrate that these challenges can be conquered by introducing a halogen ion into the Zn2+ solvation structure. By designing an electrolyte composed of zinc acetate and ammonium halide, the electron-donating anion I- can coordinate with Zn2+ and transform the traditional Zn(H2O)62+ to ZnI(H2O)5+, in which I- could transfer electrons into H2O and thus suppress HER. The dynamic electrostatic shielding layer formed by concomitant NH4+ can restrict the dendritic growth. As a result, the halogenated electrolyte achieves a high initial coulombic efficiency (CE) of 99.3% in the Zn plating/stripping process and remains at an average of ∼99.8% with uniform Zn deposition. Moreover, Zn-I batteries are constructed by using dissociative I- as the cathode and carbon felt-polyaniline as the conductive and adsorptive layer, exhibiting an average CE of 98.6% without capacity decay after 300 cycles. This work provides insights into the halogenated Zn2+ solvation structure and offers a general electrolyte design strategy for achieving a highly reversible Zn metal anode and batteries.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2022 Tipo del documento: Article País de afiliación: China