Your browser doesn't support javascript.
loading
Novel Class of Rhenium Borides Based on Hexagonal Boron Networks Interconnected by Short B2 Dumbbells.
Bykova, Elena; Johansson, Erik; Bykov, Maxim; Chariton, Stella; Fei, Hongzhan; Ovsyannikov, Sergey V; Aslandukova, Alena; Gabel, Stefan; Holz, Hendrik; Merle, Benoit; Alling, Björn; Abrikosov, Igor A; Smith, Jesse S; Prakapenka, Vitali B; Katsura, Tomoo; Dubrovinskaia, Natalia; Goncharov, Alexander F; Dubrovinsky, Leonid.
Afiliación
  • Bykova E; Earth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road NW, Washington, D.C., 20015, United States.
  • Johansson E; Bayerisches Geoinstitut, University of Bayreuth, Universitätstraße 30, 95440 Bayreuth, Germany.
  • Bykov M; Department of Physics, Chemistry and Biology (IFM), Linköping University, Campus Valla, Fysikhuset, SE-58183, Linköping, Sweden.
  • Chariton S; Earth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road NW, Washington, D.C., 20015, United States.
  • Fei H; Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany.
  • Ovsyannikov SV; Center for Advanced Radiation Sources, The University of Chicago, 5640 S. Ellis, Chicago, Illinois 60637, United States.
  • Aslandukova A; Bayerisches Geoinstitut, University of Bayreuth, Universitätstraße 30, 95440 Bayreuth, Germany.
  • Gabel S; Bayerisches Geoinstitut, University of Bayreuth, Universitätstraße 30, 95440 Bayreuth, Germany.
  • Holz H; Bayerisches Geoinstitut, University of Bayreuth, Universitätstraße 30, 95440 Bayreuth, Germany.
  • Merle B; Materials Science and Engineering, Institute I, Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, D-91058 Erlangen, Germany.
  • Alling B; Materials Science and Engineering, Institute I, Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, D-91058 Erlangen, Germany.
  • Abrikosov IA; Institute of Materials Engineering, University of Kassel, 34125 Kassel, Germany.
  • Smith JS; Materials Science and Engineering, Institute I, Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, D-91058 Erlangen, Germany.
  • Prakapenka VB; Institute of Materials Engineering, University of Kassel, 34125 Kassel, Germany.
  • Katsura T; Department of Physics, Chemistry and Biology (IFM), Linköping University, Campus Valla, Fysikhuset, SE-58183, Linköping, Sweden.
  • Dubrovinskaia N; Department of Physics, Chemistry and Biology (IFM), Linköping University, Campus Valla, Fysikhuset, SE-58183, Linköping, Sweden.
  • Goncharov AF; HPCAT, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States.
  • Dubrovinsky L; Center for Advanced Radiation Sources, The University of Chicago, 5640 S. Ellis, Chicago, Illinois 60637, United States.
Chem Mater ; 34(18): 8138-8152, 2022 Sep 27.
Article en En | MEDLINE | ID: mdl-36186668
ABSTRACT
Transition metal borides are known due to their attractive mechanical, electronic, refractive, and other properties. A new class of rhenium borides was identified by synchrotron single-crystal X-ray diffraction experiments in laser-heated diamond anvil cells between 26 and 75 GPa. Recoverable to ambient conditions, compounds rhenium triboride (ReB3) and rhenium tetraboride (ReB4) consist of close-packed single layers of rhenium atoms alternating with boron networks built from puckered hexagonal layers, which link short bonded (∼1.7 Å) axially oriented B2 dumbbells. The short and incompressible Re-B and B-B bonds oriented along the hexagonal c-axis contribute to low axial compressibility comparable with the linear compressibility of diamond. Sub-millimeter samples of ReB3 and ReB4 were synthesized in a large-volume press at pressures as low as 33 GPa and used for material characterization. Crystals of both compounds are metallic and hard (Vickers hardness, H V = 34(3) GPa). Geometrical, crystal-chemical, and theoretical analysis considerations suggest that potential ReB x compounds with x > 4 can be based on the same principle of structural organization as in ReB3 and ReB4 and possess similar mechanical and electronic properties.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chem Mater Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chem Mater Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos