(C4H10NO)PbX3 (X = Cl, Br): Design of Two Lead Halide Perovskite Crystals with Moderate Nonlinear Optical Properties.
Inorg Chem
; 61(42): 16936-16943, 2022 Oct 24.
Article
en En
| MEDLINE
| ID: mdl-36205543
Introducing electronegative species into organic constituents was considered to be one effective strategy for adjusting crystal symmetry and designing new nonlinear optical (NLO) materials. By substitution of C4 in piperidine (C5H11N) with electronegative oxygen, organic morpholine (C4H9NO) was easily obtained. Therefore, to design NLO crystals, we focused on combinations of stereochemically active lone-pair (SCALP) cation (Pb2+)-based chloride and bromide with morpholine molecules. In this work, two lead halide hybrid perovskite (C4H10NO)PbX3 (X = Cl, Br, abbreviated as MPbCl3 and MPbBr3, respectively) single crystals with moderate nonlinear optical properties were synthesized by a slow evaporation method. The two title crystals belong to orthorhombic space group P212121 with one-dimensional (1D) chainlike perovskite structures. Theoretical calculations revealed that the second harmonic generation (SHG) responses mainly originate from distorted {PbX6} octahedrons of the inorganic framework. Remarkably, moderate phase-matching SHG effects of about 0.70 and 0.81 times KH2PO4, large birefringences of 0.098 and 0.111 at 1064 nm, and large laser damage thresholds (LDTs) of 19.94 and 46.82 MW/cm2 were estimated for MPbCl3 and MPbBr3, respectively. This work provides a novel strategy for new purpose-designed hybrid NLO crystals by adjustment and modulation of chemical modification.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Inorg Chem
Año:
2022
Tipo del documento:
Article
País de afiliación:
China