Your browser doesn't support javascript.
loading
Deep learning empowered volume delineation of whole-body organs-at-risk for accelerated radiotherapy.
Shi, Feng; Hu, Weigang; Wu, Jiaojiao; Han, Miaofei; Wang, Jiazhou; Zhang, Wei; Zhou, Qing; Zhou, Jingjie; Wei, Ying; Shao, Ying; Chen, Yanbo; Yu, Yue; Cao, Xiaohuan; Zhan, Yiqiang; Zhou, Xiang Sean; Gao, Yaozong; Shen, Dinggang.
Afiliación
  • Shi F; Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
  • Hu W; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
  • Wu J; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
  • Han M; Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
  • Wang J; Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
  • Zhang W; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
  • Zhou Q; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
  • Zhou J; Radiotherapy Business Unit, Shanghai United Imaging Healthcare Co., Ltd., Shanghai, China.
  • Wei Y; Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
  • Shao Y; Radiotherapy Business Unit, Shanghai United Imaging Healthcare Co., Ltd., Shanghai, China.
  • Chen Y; Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
  • Yu Y; Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
  • Cao X; Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
  • Zhan Y; Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
  • Zhou XS; Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
  • Gao Y; Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
  • Shen D; Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
Nat Commun ; 13(1): 6566, 2022 11 02.
Article en En | MEDLINE | ID: mdl-36323677
In radiotherapy for cancer patients, an indispensable process is to delineate organs-at-risk (OARs) and tumors. However, it is the most time-consuming step as manual delineation is always required from radiation oncologists. Herein, we propose a lightweight deep learning framework for radiotherapy treatment planning (RTP), named RTP-Net, to promote an automatic, rapid, and precise initialization of whole-body OARs and tumors. Briefly, the framework implements a cascade coarse-to-fine segmentation, with adaptive module for both small and large organs, and attention mechanisms for organs and boundaries. Our experiments show three merits: 1) Extensively evaluates on 67 delineation tasks on a large-scale dataset of 28,581 cases; 2) Demonstrates comparable or superior accuracy with an average Dice of 0.95; 3) Achieves near real-time delineation in most tasks with <2 s. This framework could be utilized to accelerate the contouring process in the All-in-One radiotherapy scheme, and thus greatly shorten the turnaround time of patients.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Aprendizaje Profundo / Neoplasias Tipo de estudio: Etiology_studies / Guideline / Risk_factors_studies Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Aprendizaje Profundo / Neoplasias Tipo de estudio: Etiology_studies / Guideline / Risk_factors_studies Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: China