Your browser doesn't support javascript.
loading
Reversal of mitochondrial malate dehydrogenase 2 enables anaplerosis via redox rescue in respiration-deficient cells.
Altea-Manzano, Patricia; Vandekeere, Anke; Edwards-Hicks, Joy; Roldan, Mar; Abraham, Emily; Lleshi, Xhordi; Guerrieri, Ania Naila; Berardi, Domenica; Wills, Jimi; Junior, Jair Marques; Pantazi, Asimina; Acosta, Juan Carlos; Sanchez-Martin, Rosario M; Fendt, Sarah-Maria; Martin-Hernandez, Miguel; Finch, Andrew J.
Afiliación
  • Altea-Manzano P; GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada, Junta de Andalucía, Granada 18016, Spain; Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium; Laboratory of Cellular Metabolism and Metaboli
  • Vandekeere A; Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven 3000, Belgium.
  • Edwards-Hicks J; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK.
  • Roldan M; GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada, Junta de Andalucía, Granada 18016, Spain.
  • Abraham E; Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
  • Lleshi X; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK.
  • Guerrieri AN; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK.
  • Berardi D; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK.
  • Wills J; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK.
  • Junior JM; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK.
  • Pantazi A; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK.
  • Acosta JC; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK.
  • Sanchez-Martin RM; GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada, Junta de Andalucía, Granada 18016, Spain.
  • Fendt SM; Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven 3000, Belgium.
  • Martin-Hernandez M; GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada, Junta de Andalucía, Granada 18016, Spain; Biochemistry and Molecular Biology I Department, School of Sciences, University of Granada, Avda Fuentenueva, 18071 Granada, Spain. Electronic address: miguelmartin@ugr.es.
  • Finch AJ; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK; Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Electronic address: a.finch@qmul.ac.uk.
Mol Cell ; 82(23): 4537-4547.e7, 2022 12 01.
Article en En | MEDLINE | ID: mdl-36327975
ABSTRACT
Inhibition of the electron transport chain (ETC) prevents the regeneration of mitochondrial NAD+, resulting in cessation of the oxidative tricarboxylic acid (TCA) cycle and a consequent dependence upon reductive carboxylation for aspartate synthesis. NAD+ regeneration alone in the cytosol can rescue the viability of ETC-deficient cells. Yet, how this occurs and whether transfer of oxidative equivalents to the mitochondrion is required remain unknown. Here, we show that inhibition of the ETC drives reversal of the mitochondrial aspartate transaminase (GOT2) as well as malate and succinate dehydrogenases (MDH2 and SDH) to transfer oxidative NAD+ equivalents into the mitochondrion. This supports the NAD+-dependent activity of the mitochondrial glutamate dehydrogenase (GDH) and thereby enables anaplerosis-the entry of glutamine-derived carbon into the TCA cycle and connected biosynthetic pathways. Thus, under impaired ETC function, the cytosolic redox state is communicated into the mitochondrion and acts as a rheostat to support GDH activity and cell viability.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Malato Deshidrogenasa / NAD Idioma: En Revista: Mol Cell Asunto de la revista: BIOLOGIA MOLECULAR Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Malato Deshidrogenasa / NAD Idioma: En Revista: Mol Cell Asunto de la revista: BIOLOGIA MOLECULAR Año: 2022 Tipo del documento: Article