Your browser doesn't support javascript.
loading
Metrics of high cofluctuation and entropy to describe control of cardiac function in the stellate ganglion.
Gurel, Nil Z; Sudarshan, Koustubh B; Hadaya, Joseph; Karavos, Alex; Temma, Taro; Hori, Yuichi; Armour, J Andrew; Kember, Guy; Ajijola, Olujimi A.
Afiliación
  • Gurel NZ; UCLA Cardiac Arrhythmia Center and UCLA Neurocardiology Research Program of Excellence, Los Angeles, United States.
  • Sudarshan KB; Department of Engineering Mathematics and Internetworking, Dalhousie University, Nova Scotia, Canada.
  • Hadaya J; UCLA Cardiac Arrhythmia Center and UCLA Neurocardiology Research Program of Excellence, Los Angeles, United States.
  • Karavos A; UCLA Molecular, Cellular, and Integrative Physiology Program, Los Angeles, United States.
  • Temma T; Department of Engineering Mathematics and Internetworking, Dalhousie University, Nova Scotia, Canada.
  • Hori Y; UCLA Cardiac Arrhythmia Center and UCLA Neurocardiology Research Program of Excellence, Los Angeles, United States.
  • Armour JA; UCLA Cardiac Arrhythmia Center and UCLA Neurocardiology Research Program of Excellence, Los Angeles, United States.
  • Kember G; UCLA Cardiac Arrhythmia Center and UCLA Neurocardiology Research Program of Excellence, Los Angeles, United States.
  • Ajijola OA; Department of Engineering Mathematics and Internetworking, Dalhousie University, Nova Scotia, Canada.
Elife ; 112022 11 25.
Article en En | MEDLINE | ID: mdl-36426848
ABSTRACT
Stellate ganglia within the intrathoracic cardiac control system receive and integrate central, peripheral, and cardiopulmonary information to produce postganglionic cardiac sympathetic inputs. Pathological anatomical and structural remodeling occurs within the neurons of the stellate ganglion (SG) in the setting of heart failure (HF). A large proportion of SG neurons function as interneurons whose networking capabilities are largely unknown. Current therapies are limited to targeting sympathetic activity at the cardiac level or surgical interventions such as stellectomy, to treat HF. Future therapies that target the SG will require understanding of their networking capabilities to modify any pathological remodeling. We observe SG networking by examining cofluctuation and specificity of SG networked activity to cardiac cycle phases. We investigate network processing of cardiopulmonary transduction by SG neuronal populations in porcine with chronic pacing-induced HF and control subjects during extended in-vivo extracellular microelectrode recordings. We find that information processing and cardiac control in chronic HF by the SG, relative to controls, exhibits (i) more frequent, short-lived, high magnitude cofluctuations, (ii) greater variation in neural specificity to cardiac cycles, and (iii) neural network activity and cardiac control linkage that depends on disease state and cofluctuation magnitude.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ganglio Estrellado / Insuficiencia Cardíaca Límite: Animals Idioma: En Revista: Elife Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ganglio Estrellado / Insuficiencia Cardíaca Límite: Animals Idioma: En Revista: Elife Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos