Your browser doesn't support javascript.
loading
Gut colonization by Bacteroides requires translation by an EF-G paralog lacking GTPase activity.
Han, Weiwei; Peng, Bee-Zen; Wang, Chunyan; Townsend, Guy E; Barry, Natasha A; Peske, Frank; Goodman, Andrew L; Liu, Jun; Rodnina, Marina V; Groisman, Eduardo A.
Afiliación
  • Han W; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.
  • Peng BZ; Yale Microbial Sciences Institute, West Haven, CT, USA.
  • Wang C; Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
  • Townsend GE; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.
  • Barry NA; Yale Microbial Sciences Institute, West Haven, CT, USA.
  • Peske F; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.
  • Goodman AL; Yale Microbial Sciences Institute, West Haven, CT, USA.
  • Liu J; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.
  • Rodnina MV; Yale Microbial Sciences Institute, West Haven, CT, USA.
  • Groisman EA; Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
EMBO J ; 42(2): e112372, 2023 01 16.
Article en En | MEDLINE | ID: mdl-36472247
Protein synthesis is crucial for cell growth and survival yet one of the most energy-consuming cellular processes. How, then, do cells sustain protein synthesis under starvation conditions when energy is limited? To accelerate the translocation of mRNA-tRNAs through the ribosome, bacterial elongation factor G (EF-G) hydrolyzes energy-rich guanosine triphosphate (GTP) for every amino acid incorporated into a protein. Here, we identify an EF-G paralog-EF-G2-that supports translocation without hydrolyzing GTP in the gut commensal bacterium Bacteroides thetaiotaomicron. EF-G2's singular ability to sustain protein synthesis, albeit at slow rates, is crucial for bacterial gut colonization. EF-G2 is ~10-fold more abundant than canonical EF-G1 in bacteria harvested from murine ceca and, unlike EF-G1, specifically accumulates during carbon starvation. Moreover, we uncover a 26-residue region unique to EF-G2 that is essential for protein synthesis, EF-G2 dissociation from the ribosome, and responsible for the absence of GTPase activity. Our findings reveal how cells curb energy consumption while maintaining protein synthesis to advance fitness in nutrient-fluctuating environments.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bacteroides / Factor G de Elongación Peptídica Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: EMBO J Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bacteroides / Factor G de Elongación Peptídica Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: EMBO J Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos