Your browser doesn't support javascript.
loading
Microglia-containing human brain organoids for the study of brain development and pathology.
Zhang, Wendiao; Jiang, Jiamei; Xu, Zhenhong; Yan, Hongye; Tang, Beisha; Liu, Chunyu; Chen, Chao; Meng, Qingtuan.
Afiliación
  • Zhang W; The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
  • Jiang J; Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
  • Xu Z; The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
  • Yan H; The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
  • Tang B; The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
  • Liu C; The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
  • Chen C; The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
  • Meng Q; The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
Mol Psychiatry ; 28(1): 96-107, 2023 01.
Article en En | MEDLINE | ID: mdl-36474001
ABSTRACT
Microglia are resident immune cells in the central nervous system, playing critical roles in brain development and homeostasis. Increasing evidence has implicated microglia dysfunction in the pathogenesis of various brain disorders ranging from psychiatric disorders to neurodegenerative diseases. Using a human cell-based model to illuminate the functional mechanisms of microglia will promote pathological studies and drug development. The recently developed microglia-containing human brain organoids (MC-HBOs), in-vitro three-dimensional cell cultures that recapitulate key features of the human brain, have provided a new avenue to model brain development and pathology. However, MC-HBOs generated from different methods differ in the origin, proportion, and fidelity of microglia within the organoids, and may have produced inconsistent results. To help researchers to develop a robust and reproducible model that recapitulates in-vivo signatures of human microglia to study brain development and pathology, this review summarized the current methods used to generate MC-HBOs and provided opinions on the use of MC-HBOs for disease modeling and functional studies.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Microglía / Enfermedades Neurodegenerativas Límite: Humans Idioma: En Revista: Mol Psychiatry Asunto de la revista: BIOLOGIA MOLECULAR / PSIQUIATRIA Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Microglía / Enfermedades Neurodegenerativas Límite: Humans Idioma: En Revista: Mol Psychiatry Asunto de la revista: BIOLOGIA MOLECULAR / PSIQUIATRIA Año: 2023 Tipo del documento: Article País de afiliación: China