Your browser doesn't support javascript.
loading
Metal bioaccumulation and transfer in benthic species based on isotopic signatures of individual amino acids in South China Sea cold seep environments.
Lu, Guangyuan; Zhang, Zhongyi; Wang, Wen-Xiong.
Afiliación
  • Lu G; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Research Center for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 51807, China.
  • Zhang Z; School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China.
  • Wang WX; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Research Center for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 51807, China; School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China. Electronic address: wx.wang@cityu.edu.hk.
Environ Pollut ; 317: 120822, 2023 Jan 15.
Article en En | MEDLINE | ID: mdl-36481461
ABSTRACT
Cold seeps are deep-sea 'oases' with dense and dominant coexisting populations of large mussels and tubeworms under extreme environments. Under such natural source of high metal concentrations, the present study investigated the metal bioaccumulation and transfer with trophic positions in six benthic species by the isotopic δ15N and δ13C signatures in the active Haima cold seep, South China Sea. Comparing the isotopic signatures of bulk-tissue and amino acids by compound-specific isotopic analysis (CSIA-AA), we found that the bulk trophic (TPB) values in the benthos except mussels were significantly higher than those of CSIA-based TPGlu-Phe values. The estimated CSIA-based TPGlu-Phe values showed a relatively compressed food chain with much changeable and unique amino acid isotopic heterogeneity, followed slim tubeworms (1.20)<mussels (1.38)<clams (1.52)clams. Pearson correlation analysis showed that most metals had no significant relationship between their bioaccumulation and trophic positions, whereas Hg showed a significantly positive bioaccumulation through trophic transfer in such a compressed food chain. Water exposure was a major metal source rather than bacterial assimilation for most metals in the cold seep higher consumers. Hyperaccumulation of specific metals in some tissues of different benthos indicated different metal overflows in the Haima cold seep (As and Ni for tubeworms, Zn and Cd for clam gills, Ag and Cu for mussel gills). This study demonstrated high metal adaptations in different species and stable isotopic characteristics of amino acid metabolism in a natural high metal source of an active deep-sea cold seep, which is important for deep-sea development and environmental protection.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Bivalvos / Mercurio Límite: Animals País/Región como asunto: Asia Idioma: En Revista: Environ Pollut Asunto de la revista: SAUDE AMBIENTAL Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Bivalvos / Mercurio Límite: Animals País/Región como asunto: Asia Idioma: En Revista: Environ Pollut Asunto de la revista: SAUDE AMBIENTAL Año: 2023 Tipo del documento: Article País de afiliación: China