Your browser doesn't support javascript.
loading
Microbiome-mediated fructose depletion restricts murine gut colonization by vancomycin-resistant Enterococcus.
Isaac, Sandrine; Flor-Duro, Alejandra; Carruana, Gloria; Puchades-Carrasco, Leonor; Quirant, Anna; Lopez-Nogueroles, Marina; Pineda-Lucena, Antonio; Garcia-Garcera, Marc; Ubeda, Carles.
Afiliación
  • Isaac S; Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana - FISABIO, Valencia, Spain. isaacsandrine8488@gmail.com.
  • Flor-Duro A; Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. isaacsandrine8488@gmail.com.
  • Carruana G; Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana - FISABIO, Valencia, Spain.
  • Puchades-Carrasco L; Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana - FISABIO, Valencia, Spain.
  • Quirant A; Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
  • Lopez-Nogueroles M; Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana - FISABIO, Valencia, Spain.
  • Pineda-Lucena A; Analytical Unit Platform, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
  • Garcia-Garcera M; Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
  • Ubeda C; Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain.
Nat Commun ; 13(1): 7718, 2022 12 13.
Article en En | MEDLINE | ID: mdl-36513659
ABSTRACT
Multidrug-resistant organisms (MDRO) are a major threat to public health. MDRO infections, including those caused by vancomycin-resistant Enterococcus (VRE), frequently begin by colonization of the intestinal tract, a crucial step that is impaired by the intestinal microbiota. However, the specific members of the microbiota that suppress MDRO colonization and the mechanisms of such protection are largely unknown. Here, using metagenomics and mouse models that mimic the patients' exposure to antibiotics, we identified commensal bacteria associated with protection against VRE colonization. We further found a consortium of five strains that was sufficient to restrict VRE gut colonization in antibiotic treated mice. Transcriptomics in combination with targeted metabolomics and in vivo assays indicated that the bacterial consortium inhibits VRE growth through nutrient depletion, specifically by reducing the levels of fructose, a carbohydrate that boosts VRE growth in vivo. Finally, in vivo RNA-seq analysis of each strain of the consortium in combination with ex vivo and in vivo assays demonstrated that a single bacterium (Olsenella sp.) could recapitulate the effect of the consortium. Our results indicate that nutrient depletion by specific commensals can reduce VRE intestinal colonization, which represents a novel non-antibiotic based strategy to prevent infections caused by this multidrug-resistant organism.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Infecciones por Bacterias Grampositivas / Microbiota / Enterococos Resistentes a la Vancomicina Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Infecciones por Bacterias Grampositivas / Microbiota / Enterococos Resistentes a la Vancomicina Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: España