Your browser doesn't support javascript.
loading
Multidimensional control of therapeutic human cell function with synthetic gene circuits.
Li, Hui-Shan; Israni, Divya V; Gagnon, Keith A; Gan, Kok Ann; Raymond, Michael H; Sander, Jeffry D; Roybal, Kole T; Joung, J Keith; Wong, Wilson W; Khalil, Ahmad S.
Afiliación
  • Li HS; Biological Design Center, Boston University, Boston, MA, USA.
  • Israni DV; Department of Biomedical Engineering, Boston University, Boston, MA, USA.
  • Gagnon KA; Biological Design Center, Boston University, Boston, MA, USA.
  • Gan KA; Department of Biomedical Engineering, Boston University, Boston, MA, USA.
  • Raymond MH; Biological Design Center, Boston University, Boston, MA, USA.
  • Sander JD; Department of Biomedical Engineering, Boston University, Boston, MA, USA.
  • Roybal KT; Biological Design Center, Boston University, Boston, MA, USA.
  • Joung JK; Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, USA.
  • Wong WW; Biological Design Center, Boston University, Boston, MA, USA.
  • Khalil AS; Department of Biomedical Engineering, Boston University, Boston, MA, USA.
Science ; 378(6625): 1227-1234, 2022 12 16.
Article en En | MEDLINE | ID: mdl-36520914
ABSTRACT
Synthetic gene circuits that precisely control human cell function could expand the capabilities of gene- and cell-based therapies. However, platforms for developing circuits in primary human cells that drive robust functional changes in vivo and have compositions suitable for clinical use are lacking. Here, we developed synthetic zinc finger transcription regulators (synZiFTRs), which are compact and based largely on human-derived proteins. As a proof of principle, we engineered gene switches and circuits that allow precise, user-defined control over therapeutically relevant genes in primary T cells using orthogonal, US Food and Drug Administration-approved small-molecule inducers. Our circuits can instruct T cells to sequentially activate multiple cellular programs such as proliferation and antitumor activity to drive synergistic therapeutic responses. This platform should accelerate the development and clinical translation of synthetic gene circuits in diverse human cell types and contexts.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Factores de Transcripción / Linfocitos T / Dedos de Zinc / Redes Reguladoras de Genes / Tratamiento Basado en Trasplante de Células y Tejidos / Genes Sintéticos Límite: Humans Idioma: En Revista: Science Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Factores de Transcripción / Linfocitos T / Dedos de Zinc / Redes Reguladoras de Genes / Tratamiento Basado en Trasplante de Células y Tejidos / Genes Sintéticos Límite: Humans Idioma: En Revista: Science Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos