Your browser doesn't support javascript.
loading
Within-host and external environments differentially shape ß-diversity across parasite life stages.
Warburton, Elizabeth M; Budischak, Sarah A; Jolles, Anna E; Ezenwa, Vanessa O.
Afiliación
  • Warburton EM; Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, Georgia, USA.
  • Budischak SA; W.M. Keck Department of Science, Claremont McKenna College, Claremont, California, USA.
  • Jolles AE; College of Veterinary Medicine and Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA.
  • Ezenwa VO; Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.
J Anim Ecol ; 92(3): 665-676, 2023 03.
Article en En | MEDLINE | ID: mdl-36567629
Uncovering drivers of community assembly is a key aspect of learning how biological communities function. Drivers of community similarity can be especially useful in this task as they affect assemblage-level changes that lead to differences in species diversity between habitats. Concepts of ß-diversity originally developed for use in free-living communities have been widely applied to parasite communities to gain insight into how infection risk changes with local conditions by comparing parasite communities across abiotic and biotic gradients. Factors shaping ß-diversity in communities of immature parasites, such as larvae, are largely unknown. This is a key knowledge gap as larvae are frequently the infective life-stage and understanding variation in these larval communities is thus key for disease prevention. Our goal was to uncover links between ß-diversity of parasite communities at different life stages; therefore, we used gastrointestinal nematodes infecting African buffalo in Kruger National Park, South Africa, to investigate within-host and extra-host drivers of adult and larval parasite community similarity. We employed a cross-sectional approach using PERMANOVA that examined each worm community at a single time point to assess independent drivers of ß-diversity in larvae and adults as well as a longitudinal approach with path analysis where adult and larval communities from the same host were compared to better link drivers of ß-diversity between these two life stages. Using the cross-sectional approach, we generally found that intrinsic, within-host traits had significant effects on ß-diversity of adult nematode communities, while extrinsic, extra-host variables had significant effects on ß-diversity of larval nematode communities. However, the longitudinal approach provided evidence that intrinsic, within-host factors affected the larval community indirectly via the adult community. Our results provide key data for the comparison of community-level processes where adult and immature stages inhabit vastly different habitats (i.e. within-host vs. abiotic environment). In the context of parasitism, this helps elucidate host infection risk via larval stages and the drivers that shape persistence of adult parasite assemblages, both of which are useful for predicting and preventing infectious disease.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Parásitos / Nematodos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Anim Ecol Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Parásitos / Nematodos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Anim Ecol Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos