Your browser doesn't support javascript.
loading
Propagating uncertainty about molecular evolution models and prior distributions to phylogenetic trees.
Bickel, David R.
Afiliación
  • Bickel DR; Informatics and Analytics, University of North Carolina at Greensboro, The Graduate School, 241 Mossman Building, CAMPUS, Greensboro, NC 27402-6170, USA. Electronic address: dbickel@uncg.edu.
Mol Phylogenet Evol ; 180: 107689, 2023 03.
Article en En | MEDLINE | ID: mdl-36587884
Phylogenetic trees constructed from molecular sequence data rely on largely arbitrary assumptions about the substitution model, the distribution of substitution rates across sites, the version of the molecular clock, and, in the case of Bayesian inference, the prior distribution. Those assumptions affect results reported in the form of clade probabilities and error bars on divergence times and substitution rates. Overlooking the uncertainty in the assumptions leads to overly confident conclusions in the form of inflated clade probabilities and short confidence intervals or credible intervals. This paper demonstrates how to propagate that uncertainty by combining the models considered along with all of their assumptions, including their prior distributions. The combined models incorporate much more of the uncertainty than Bayesian model averages since the latter tend to settle on a single model due to the higher-level assumption that one of the models is true. Nucleotide sequence data illustrates the proposed model combination method.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Evolución Molecular / Modelos Genéticos Tipo de estudio: Prognostic_studies Idioma: En Revista: Mol Phylogenet Evol Asunto de la revista: BIOLOGIA / BIOLOGIA MOLECULAR Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Evolución Molecular / Modelos Genéticos Tipo de estudio: Prognostic_studies Idioma: En Revista: Mol Phylogenet Evol Asunto de la revista: BIOLOGIA / BIOLOGIA MOLECULAR Año: 2023 Tipo del documento: Article