Your browser doesn't support javascript.
loading
Comparative Study of Two Common In Vitro Models for the Pancreatic Islet with MIN6.
Chao, Xinxin; Zhao, Furong; Hu, Jiawei; Yu, Yanrong; Xie, Renjian; Zhong, Jianing; Huang, Miao; Zeng, Tai; Yang, Hui; Luo, Dan; Peng, Weijie.
Afiliación
  • Chao X; Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China.
  • Zhao F; The Affiliated Hospital of Jining Medical University, Shandong, China.
  • Hu J; Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China.
  • Yu Y; Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong, China.
  • Xie R; Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China.
  • Zhong J; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.
  • Huang M; Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China.
  • Zeng T; Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China.
  • Yang H; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.
  • Luo D; Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China.
  • Peng W; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.
Tissue Eng Regen Med ; 20(1): 127-141, 2023 02.
Article en En | MEDLINE | ID: mdl-36592326
ABSTRACT

BACKGROUND:

Islet transplantation is currently considered the most promising method for treating insulin-dependent diabetes. The two most-studied artificial islets are alginate-encapsulated ß cells or ß cell spheroids. As three-dimensional (3D) models, both artificial islets have better insulin secretory functions and transplantation efficiencies than cells in two-dimensional (2D) monolayer culture. However, the effects of these two methods have not been compared yet. Therefore, in this study, cells from the mouse islet ß cell line Min6 were constructed as scaffold-free spheroids or alginate-encapsulated dispersed cells.

METHODS:

MIN6 cell spheroids were prepared by using Agarose-base microwell arrays. The insulin secretion level was determined by mouse insulin ELISA kit, and the gene and protein expression status of the MIN6 were performed by Quantitative polymerase chain reaction and immunoblot, respectively.

RESULTS:

Both 3D cultures effectively promoted the proliferation and glucose-stimulated insulin release (GSIS) of MIN6 cells compared to 2D adherent cells. Furthermore, 1% alginate-encapsulated MIN6 cells demonstrated more significant effects than the spheroids. In general, three pancreatic genes were expressed at higher levels in response to the 3D culture than to the 2D culture, and pancreatic/duodenal homeobox-1 (PDX1) expression was higher in the cells encapsulated in 1% alginate than that in the spheroids. A western blot analysis showed that 1% alginate-encapsulated MIN6 cells activated the phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase (AKT)/forkhead transcription factor FKHR (FoxO1) pathway more than the spheroids, 0.5% alginate-, or 2% alginate-encapsulated cells did. The 3D MIN6 culture, therefore, showed improved effects compared to the 2D culture, and the 1% alginate-encapsulated MIN6 cells exhibited better effects than the spheroids. The upregulation of PDX1 expression through the activation of the PI3K/AKT/FoxO1 pathway may mediate the improved cell proliferation and GSIS in 1% alginate-encapsulated MIN6 cells.

CONCLUSION:

This study may contribute to the construction of in vitro culture systems for pancreatic islets to meet clinical requirements.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Islotes Pancreáticos / Fosfatidilinositol 3-Quinasas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Tissue Eng Regen Med Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Islotes Pancreáticos / Fosfatidilinositol 3-Quinasas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Tissue Eng Regen Med Año: 2023 Tipo del documento: Article País de afiliación: China