Your browser doesn't support javascript.
loading
Dynamic network biomarker identifies cdkn1a-mediated bone mineralization in the triggering phase of osteoporosis.
Guo, Weiming; Jin, Peng; Li, Ruomei; Huang, Lu; Liu, Zhen; Li, Hairui; Zhou, Ting; Fang, Bing; Xia, Lunguo.
Afiliación
  • Guo W; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shangha
  • Jin P; Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.
  • Li R; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shangha
  • Huang L; Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.
  • Liu Z; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shangha
  • Li H; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shangha
  • Zhou T; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shangha
  • Fang B; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shangha
  • Xia L; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shangha
Exp Mol Med ; 55(1): 81-94, 2023 01.
Article en En | MEDLINE | ID: mdl-36599933
ABSTRACT
The identification of predictive markers to determine the triggering phase prior to the onset of osteoporosis is essential to mitigate further irrevocable deterioration. To determine the early warning signs before osteoporosis, we used the dynamic network biomarker (DNB) approach to analyze time-series gene expression data in a zebrafish osteoporosis model, which revealed that cyclin-dependent kinase inhibitor 1 A (cdkn1a) is a core DNB. We found that cdkn1a negatively regulates osteogenesis, as evidenced by loss-of-function and gain-of-function studies. Specifically, CRISPR/Cas9-mediated cdkn1a knockout in zebrafish significantly altered skeletal development and increased bone mineralization, whereas inducible cdkn1a expression significantly contributed to osteoclast differentiation. We also found several mechanistic clues that cdkn1a participates in osteoclast differentiation by regulating its upstream signaling cascades. To summarize, in this study, we provided new insights into the dynamic nature of osteoporosis and identified cdkn1a as an early-warning signal of osteoporosis onset.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Osteoporosis / Calcificación Fisiológica Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Exp Mol Med Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Osteoporosis / Calcificación Fisiológica Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Exp Mol Med Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA Año: 2023 Tipo del documento: Article