Your browser doesn't support javascript.
loading
Red-to-Near-Infrared Emitting PyrrolylBODIPY Dyes: Synthesis, Photophysical Properties and Bioimaging Application.
Miao, Wei; Guo, Xing; Yan, Xi; Shang, Yingjian; Yu, Changjiang; Dai, En; Jiang, Ting; Hao, Erhong; Jiao, Lijuan.
Afiliación
  • Miao W; Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China.
  • Guo X; Department of Nuclear Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, CN 230022, P.R. China.
  • Yan X; Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China.
  • Shang Y; Department of Nuclear Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, CN 230022, P.R. China.
  • Yu C; Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China.
  • Dai E; Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China.
  • Jiang T; Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China.
  • Hao E; Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China.
  • Jiao L; Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China.
Chemistry ; 29(14): e202203832, 2023 Mar 07.
Article en En | MEDLINE | ID: mdl-36650103
ABSTRACT
Near-infrared (NIR) fluorophores with characteristics such as deep tissue penetration, minimal damage to the biological samples, and low background interference, are highly sought-after materials for in vivo and deep-tissue fluorescence imaging. Herein, series of 3-pyrrolylBODIPY derivatives and 3,5-dipyrrolylBODIPY derivatives have been prepared by a facile regioselective nucleophilic aromatic substitution reaction (SN Ar) on 3,5-halogenated BODIPY derivatives (3,5-dibromo or 2,3,5,6-tetrachloroBODIPYs) with pyrroles. The installation of a pyrrolic unit onto the 3-position of the BODIPY chromophore leads to a dramatic red shift of both the absorption (up to 160 nm) and the emission (up to 260 nm) in these resultant 3-pyrrolylBODIPYs with respect to that of the BODIPY chromophore. Their further 5-positional functionalization provides a facile way to fine tune their photophysical properties, and these resulting dipyrrolylBODIPYs and functionalized pyrrolylBODIPYs show strong absorption in the deep red-to-NIR regions (595-684 nm) and intense NIR fluorescence emission (650-715 nm) in dichloromethane. To demonstrate the applicability of these functionalized pyrrolylBODIPYs as NIR fluorescent probes for cell imaging, pyrrolylBODIPY 6 a containing mitochondrion-targeting butyltriphenylphosphonium cationic species was also prepared. It selectively localized in mitochondria of HeLa cells, with low cytotoxicity and intense deep red fluorescence emission.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Compuestos de Boro / Colorantes Fluorescentes Límite: Humans Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Compuestos de Boro / Colorantes Fluorescentes Límite: Humans Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2023 Tipo del documento: Article