Comparison of a Deep Learning-Accelerated vs. Conventional T2-Weighted Sequence in Biparametric MRI of the Prostate.
J Magn Reson Imaging
; 58(4): 1055-1064, 2023 10.
Article
en En
| MEDLINE
| ID: mdl-36651358
BACKGROUND: Demand for prostate MRI is increasing, but scan times remain long even in abbreviated biparametric MRIs (bpMRI). Deep learning can be leveraged to accelerate T2-weighted imaging (T2WI). PURPOSE: To compare conventional bpMRIs (CL-bpMRI) with bpMRIs including a deep learning-accelerated T2WI (DL-bpMRI) in diagnosing prostate cancer. STUDY TYPE: Retrospective. POPULATION: Eighty consecutive men, mean age 66 years (47-84) with suspected prostate cancer or prostate cancer on active surveillance who had a prostate MRI from December 28, 2020 to April 28, 2021 were included. Follow-up included prostate biopsy or stability of prostate-specific antigen (PSA) for 1 year. FIELD STRENGTH AND SEQUENCES: A 3 T MRI. Conventional axial and coronal T2 turbo spin echo (CL-T2), 3-fold deep learning-accelerated axial and coronal T2-weighted sequence (DL-T2), diffusion weighted imaging (DWI) with b = 50 sec/mm2 , 1000 sec/mm2 , calculated b = 1500 sec/mm2 . ASSESSMENT: CL-bpMRI and DL-bpMRI including the same conventional diffusion-weighted imaging (DWI) were presented to three radiologists (blinded to acquisition method) and to a deep learning computer-assisted detection algorithm (DL-CAD). The readers evaluated image quality using a 4-point Likert scale (1 = nondiagnostic, 4 = excellent) and graded lesions using Prostate Imaging Reporting and Data System (PI-RADS) v2.1. DL-CAD identified and assigned lesions of PI-RADS 3 or greater. STATISTICAL TESTS: Quality metrics were compared using Wilcoxon signed rank test, and area under the receiver operating characteristic curve (AUC) were compared using Delong's test. SIGNIFICANCE: P = 0.05. RESULTS: Eighty men were included (age: 66 ± 9 years; 17/80 clinically significant prostate cancer). Overall image quality results by the three readers (CL-T2, DL-T2) are reader 1: 3.72 ± 0.53, 3.89 ± 0.39 (P = 0.99); reader 2: 3.33 ± 0.82, 3.31 ± 0.74 (P = 0.49); reader 3: 3.67 ± 0.63, 3.51 ± 0.62. In the patient-based analysis, the reader results of AUC are (CL-bpMRI, DL-bpMRI): reader 1: 0.77, 0.78 (P = 0.98), reader 2: 0.65, 0.66 (P = 0.99), reader 3: 0.57, 0.60 (P = 0.52). Diagnostic statistics from DL-CAD (CL-bpMRI, DL-bpMRI) are sensitivity (0.71, 0.71, P = 1.00), specificity (0.59, 0.44, P = 0.05), positive predictive value (0.23, 0.24, P = 0.25), negative predictive value (0.88, 0.88, P = 0.48). CONCLUSION: Deep learning-accelerated T2-weighted imaging may potentially be used to decrease acquisition time for bpMRI. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Neoplasias de la Próstata
/
Aprendizaje Profundo
Tipo de estudio:
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Límite:
Aged
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
J Magn Reson Imaging
Asunto de la revista:
DIAGNOSTICO POR IMAGEM
Año:
2023
Tipo del documento:
Article
País de afiliación:
Estados Unidos