Your browser doesn't support javascript.
loading
Classifying Alzheimer's disease and frontotemporal dementia using machine learning with cross-sectional and longitudinal magnetic resonance imaging data.
Pérez-Millan, Agnès; Contador, José; Juncà-Parella, Jordi; Bosch, Beatriz; Borrell, Laia; Tort-Merino, Adrià; Falgàs, Neus; Borrego-Écija, Sergi; Bargalló, Nuria; Rami, Lorena; Balasa, Mircea; Lladó, Albert; Sánchez-Valle, Raquel; Sala-Llonch, Roser.
Afiliación
  • Pérez-Millan A; Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain.
  • Contador J; Department of Biomedicine, Faculty of Medicine, Institute of Neurosciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
  • Juncà-Parella J; Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain.
  • Bosch B; Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain.
  • Borrell L; Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain.
  • Tort-Merino A; Department of Biomedicine, Faculty of Medicine, Institute of Neurosciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
  • Falgàs N; Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain.
  • Borrego-Écija S; Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain.
  • Bargalló N; Atlantic Fellow for Equity in Brain Health, Global Brain Heath Institute, University of California San Francisco, Trinity College Dublin, San Francisco, California, USA.
  • Rami L; Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain.
  • Balasa M; Image Diagnostic Centre, Hospital Clínic de Barcelona, CIBER de Salud Mental, Instituto de Salud Carlos III. Magnetic Resonance Image Core Facility, IDIBAPS, Barcelona, Spain.
  • Lladó A; Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain.
  • Sánchez-Valle R; Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain.
  • Sala-Llonch R; Atlantic Fellow for Equity in Brain Health, Global Brain Heath Institute, University of California San Francisco, Trinity College Dublin, San Francisco, California, USA.
Hum Brain Mapp ; 44(6): 2234-2244, 2023 04 15.
Article en En | MEDLINE | ID: mdl-36661219
Alzheimer's disease (AD) and frontotemporal dementia (FTD) are common causes of dementia with partly overlapping, symptoms and brain signatures. There is a need to establish an accurate diagnosis and to obtain markers for disease tracking. We combined unsupervised and supervised machine learning to discriminate between AD and FTD using brain magnetic resonance imaging (MRI). We included baseline 3T-T1 MRI data from 339 subjects: 99 healthy controls (CTR), 153 AD and 87 FTD patients; and 2-year follow-up data from 114 subjects. We obtained subcortical gray matter volumes and cortical thickness measures using FreeSurfer. We used dimensionality reduction to obtain a single feature that was later used in a support vector machine for classification. Discrimination patterns were obtained with the contribution of each region to the single feature. Our algorithm differentiated CTR versus AD and CTR versus FTD at the cross-sectional level with 83.3% and 82.1% of accuracy. These increased up to 90.0% and 88.0% with longitudinal data. When we studied the classification between AD versus FTD we obtained an accuracy of 63.3% at the cross-sectional level and 75.0% for longitudinal data. The AD versus FTD versus CTR classification has reached an accuracy of 60.7%, and 71.3% for cross-sectional and longitudinal data respectively. Disease discrimination brain maps are in concordance with previous results obtained with classical approaches. By using a single feature, we were capable to classify CTR, AD, and FTD with good accuracy, considering the inherent overlap between diseases. Importantly, the algorithm can be used with cross-sectional and longitudinal data.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Demencia Frontotemporal / Enfermedad de Alzheimer Tipo de estudio: Observational_studies / Prevalence_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Hum Brain Mapp Asunto de la revista: CEREBRO Año: 2023 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Demencia Frontotemporal / Enfermedad de Alzheimer Tipo de estudio: Observational_studies / Prevalence_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Hum Brain Mapp Asunto de la revista: CEREBRO Año: 2023 Tipo del documento: Article País de afiliación: España