Your browser doesn't support javascript.
loading
Semisupervised Machine Learning for Sensitive Open Modification Spectral Library Searching.
Arab, Issar; Fondrie, William E; Laukens, Kris; Bittremieux, Wout.
Afiliación
  • Arab I; Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium.
  • Fondrie WE; Biomedical Informatics Network Antwerpen (biomina), 2020 Antwerp, Belgium.
  • Laukens K; Talus Bioscience, Seattle, Washington 98195, United States.
  • Bittremieux W; Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium.
J Proteome Res ; 22(2): 585-593, 2023 02 03.
Article en En | MEDLINE | ID: mdl-36688569
A key analysis task in mass spectrometry proteomics is matching the acquired tandem mass spectra to their originating peptides by sequence database searching or spectral library searching. Machine learning is an increasingly popular postprocessing approach to maximize the number of confident spectrum identifications that can be obtained at a given false discovery rate threshold. Here, we have integrated semisupervised machine learning in the ANN-SoLo tool, an efficient spectral library search engine that is optimized for open modification searching to identify peptides with any type of post-translational modification. We show that machine learning rescoring boosts the number of spectra that can be identified for both standard searching and open searching, and we provide insights into relevant spectrum characteristics harnessed by the machine learning model. The semisupervised machine learning functionality has now been fully integrated into ANN-SoLo, which is available as open source under the permissive Apache 2.0 license on GitHub at https://github.com/bittremieux/ANN-SoLo.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Péptidos / Programas Informáticos Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: J Proteome Res Asunto de la revista: BIOQUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Bélgica

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Péptidos / Programas Informáticos Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: J Proteome Res Asunto de la revista: BIOQUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Bélgica