Your browser doesn't support javascript.
loading
Inhibiting collective cation migration in Li-rich cathode materials as a strategy to mitigate voltage hysteresis.
Huang, Jianping; Ouyang, Bin; Zhang, Yaqian; Yin, Liang; Kwon, Deok-Hwang; Cai, Zijian; Lun, Zhengyan; Zeng, Guobo; Balasubramanian, Mahalingam; Ceder, Gerbrand.
Afiliación
  • Huang J; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Ouyang B; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Zhang Y; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
  • Yin L; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Kwon DH; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
  • Cai Z; X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA.
  • Lun Z; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Zeng G; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
  • Balasubramanian M; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Ceder G; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
Nat Mater ; 22(3): 353-361, 2023 Mar.
Article en En | MEDLINE | ID: mdl-36702887
ABSTRACT
Lithium-rich cathodes are promising energy storage materials due to their high energy densities. However, voltage hysteresis, which is generally associated with transition metal migration, limits their energy efficiency and implementation in practical devices. Here we reveal that voltage hysteresis is related to the collective migration of metal ions, and that isolating the migration events from each other by creating partial disorder can create high-capacity reversible cathode materials, even when migrating transition metal ions are present. We demonstrate this on a layered Li-rich chromium manganese oxide that in its fully ordered state displays a substantial voltage hysteresis (>2.5 V) associated with collective transition metal migration into Li layers, but can be made to achieve high capacity (>360 mAh g-1) and energy density (>1,100 Wh kg-1) when the collective migration is perturbed by partial disorder. This study demonstrates that partially cation-disordered cathode materials can accommodate a high level of transition metal migration, which broadens our options for redox couples to those of mobile cations.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos