Your browser doesn't support javascript.
loading
Ultrafast Energy Transfer Process in Confined Gold Nanospheres Revealed by Femtosecond X-ray Imaging and Diffraction.
Shin, Jaeyong; Jung, Chulho; Ihm, Yungok; Heo, Seung-Phil; Nam, Daewoong; Kim, Sangsoo; Kim, Minseok; Eom, Intae; Shim, Ji Hoon; Noh, Do Young; Song, Changyong.
Afiliación
  • Shin J; Department of Physics, POSTECH; Pohang37673, Korea.
  • Jung C; Korea Research Initiative, Center for Ultrafast Science on Quantum Matter, Max Planck POSTECH; Pohang37673, Korea.
  • Ihm Y; Photon Science Center, POSTECH, Pohang37673, Korea.
  • Heo SP; Department of Physics, POSTECH; Pohang37673, Korea.
  • Nam D; Korea Research Initiative, Center for Ultrafast Science on Quantum Matter, Max Planck POSTECH; Pohang37673, Korea.
  • Kim S; Photon Science Center, POSTECH, Pohang37673, Korea.
  • Kim M; Photon Science Center, POSTECH, Pohang37673, Korea.
  • Eom I; Department of Chemistry, POSTECH, Pohang37673, Korea.
  • Shim JH; Department of Physics, POSTECH; Pohang37673, Korea.
  • Noh DY; Korea Research Initiative, Center for Ultrafast Science on Quantum Matter, Max Planck POSTECH; Pohang37673, Korea.
  • Song C; Photon Science Center, POSTECH, Pohang37673, Korea.
Nano Lett ; 23(4): 1481-1488, 2023 Feb 22.
Article en En | MEDLINE | ID: mdl-36723175
ABSTRACT
Femtosecond laser pulses drive nonequilibrium phase transitions via reaction paths hidden in thermal equilibrium. This stimulates interest to understand photoinduced ultrafast melting processes, which remains incomplete due to challenges in resolving accompanied kinetics at the relevant space-time resolution. Here, by newly establishing a multiplexing femtosecond X-ray probe, we have successfully revealed ultrafast energy transfer processes in confined Au nanospheres. Real-time images of electron density distributions with the corresponding lattice structures elucidate that the energy transfer begins with subpicosecond melting at the specimen boundary earlier than the lattice thermalization, and proceeds by forming voids. Two temperature molecular dynamics simulations uncovered the presence of both heterogeneous melting with the melting front propagation from surface and grain boundaries and homogeneous melting with random melting seeds and nanoscale voids. Supported by experimental and theoretical results, we provide a comprehensive atomic-scale picture that accounts for the ultrafast laser-induced melting and evaporation kinetics.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2023 Tipo del documento: Article