Your browser doesn't support javascript.
loading
Pseudo-Pt Monolayer for Robust Hydrogen Oxidation.
Zhao, Tonghui; Li, Mengting; Xiao, Dongdong; Yang, Xiaoju; Li, Qihao; An, Lulu; Deng, Zhiping; Shen, Tao; Gong, Mingxing; Chen, Yi; Wang, Gongwei; Zhao, Xu; Xiao, Li; Yang, Xuan; Li, Li; Wang, Deli.
Afiliación
  • Zhao T; Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China.
  • Li M; The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China.
  • Xiao D; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China.
  • Yang X; Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China.
  • Li Q; College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan430072, China.
  • An L; Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China.
  • Deng Z; Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China.
  • Shen T; Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China.
  • Gong M; Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China.
  • Chen Y; Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China.
  • Wang G; College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan430072, China.
  • Zhao X; Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China.
  • Xiao L; College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan430072, China.
  • Yang X; Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China.
  • Li L; The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China.
  • Wang D; Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China.
J Am Chem Soc ; 2023 Feb 03.
Article en En | MEDLINE | ID: mdl-36734666
ABSTRACT
Heteroepitaxial core-shell structure is conducive to combining the advantages of the epilayer and the substrate, creating a novel multifunctionality for catalysis application. Herein, we report a pseudomorphic-Pt atomic layer (PmPt) epitaxially growing on an IrPd-core matrix (PmPt@IrPd/C) as an efficient and stable catalyst for alkaline hydrogen oxidation reaction that exhibits ∼29.2 times more mass activity enhancement than that of benchmark Pt/C. The PmPt@IrPd/C catalyst also gives rise to ∼25.0 times more enhancement than Pt/C during a 50,000-cycle accelerated stability test. This robust stability originates from the resistance to carbon corrosion owing to the stronger H2O interaction instead of carbon oxide (COx) poison species, and the modulated hydroxyl (OH*) adsorption could inhibit the OH* species from shuffling the surface Pt atoms away from the substrate. Moreover, the anion-exchange membrane fuel cells assembled by PmPt@IrPd/C with an ultralow Pt loading of 0.009 mgPt cm-2 in the anode can deliver a power density of 1.27 W cm-2.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2023 Tipo del documento: Article País de afiliación: China