Your browser doesn't support javascript.
loading
Facile Construction of New Hybrid Conjugation via Boron Cage Extension.
Sun, Fangxiang; Tan, Shuaimin; Cao, Hou-Ji; Lu, Chang-Sheng; Tu, Deshuang; Poater, Jordi; Solà, Miquel; Yan, Hong.
Afiliación
  • Sun F; State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
  • Tan S; State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
  • Cao HJ; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
  • Lu CS; State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
  • Tu D; State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
  • Poater J; Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain.
  • Solà M; ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain.
  • Yan H; Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany, 69, Girona 17003, Catalonia, Spain.
J Am Chem Soc ; 145(6): 3577-3587, 2023 Feb 15.
Article en En | MEDLINE | ID: mdl-36744315
Aromatic polycyclic systems have been extensively utilized as structural subunits for the preparation of various functional molecules. Currently, aromatics-based polycyclic systems are predominantly generated from the extension of two-dimensional (2D) aromatic rings. In contrast, polycyclic compounds based on the extension of three-dimensional (3D) aromatics such as boron clusters are less studied. Here, we report three types of boron cluster-cored tricyclic molecular systems, which are constructed from a 2D aromatic ring, a 3D aromatic nido-carborane, and an alkyne. These new tricyclic compounds can be facilely accessed by Pd-catalyzed B-H activation and the subsequent cascade heteroannulation of carborane and pyridine with an alkyne in an isolated yield of up to 85% under mild conditions without any additives. Computational results indicate that the newly generated ring from the fusion of the 3D carborane, the 2D pyridyl ring, and an alkyne is non-aromatic. However, such fusion not only leads to a 1H chemical shift considerably downfield shifted owing to the strong diatropic ring current of the embedded carborane but also devotes to new/improved physicochemical properties including increased thermal stability, the emergence of a new absorption band, and a largely red-shifted emission band and enhanced emission efficiency. Besides, a number of bright, color-tunable solid emitters spanning over all visible light are obtained with absolute luminescence efficiency of up to 61%, in contrast to aggregation-caused emission quenching of, e.g., Rhodamine B containing a 2D-aromatics-fused structure. This work demonstrates that the new hybrid conjugated tricyclic systems might be promising structural scaffolds for the construction of functional molecules.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2023 Tipo del documento: Article País de afiliación: China