Your browser doesn't support javascript.
loading
Two-Dimensional Topological Insulator State in Cadmium Arsenide Thin Films.
Lygo, Alexander C; Guo, Binghao; Rashidi, Arman; Huang, Victor; Cuadros-Romero, Pablo; Stemmer, Susanne.
Afiliación
  • Lygo AC; Materials Department, University of California, Santa Barbara, California 93106-5050, USA.
  • Guo B; Materials Department, University of California, Santa Barbara, California 93106-5050, USA.
  • Rashidi A; Materials Department, University of California, Santa Barbara, California 93106-5050, USA.
  • Huang V; Materials Department, University of California, Santa Barbara, California 93106-5050, USA.
  • Cuadros-Romero P; Materials Department, University of California, Santa Barbara, California 93106-5050, USA.
  • Stemmer S; Materials Department, University of California, Santa Barbara, California 93106-5050, USA.
Phys Rev Lett ; 130(4): 046201, 2023 Jan 27.
Article en En | MEDLINE | ID: mdl-36763420
Two-dimensional topological insulators (2D TIs) are a highly desired quantum phase but few materials have demonstrated clear signatures of a 2D TI state. It has been predicted that 2D TIs can be created from thin films of three-dimensional TIs by reducing the film thickness until the surface states hybridize. Here, we employ this technique to report the first observation of a 2D TI state in epitaxial thin films of cadmium arsenide, a prototype Dirac semimetal in bulk form. Using magnetotransport measurements with electrostatic gating, we observe a Landau level spectrum and quantum Hall effect that are in excellent agreement with those of an ideal 2D TI. Specifically, we observe a crossing of the zeroth Landau levels at a critical magnetic field. We show that the film thickness can be used to tune the critical magnetic field. Moreover, a larger change in film thickness causes a transition from a 2D TI to a 2D trivial insulator, just as predicted by theory. The high degree of tunability available in epitaxial cadmium arsenide heterostructures can thus be used to fine-tune the 2D TI, which is essential for future topological devices.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos