Your browser doesn't support javascript.
loading
In-house fabrication of 1.3 to 7 mm MAS drive caps using desktop 3D printers.
Amerein, Cyriaque; Banerjee, Utsab; Pang, Zhenfeng; Lu, Wenqing; Pimenta, Vanessa; Tan, Kong Ooi.
Afiliación
  • Amerein C; Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
  • Banerjee U; Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
  • Pang Z; Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
  • Lu W; Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005 Paris, France.
  • Pimenta V; Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005 Paris, France.
  • Tan KO; Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France. Electronic address: kong-ooi.tan@ens.psl.eu.
J Magn Reson ; 348: 107391, 2023 Mar.
Article en En | MEDLINE | ID: mdl-36801500
ABSTRACT
The 3D-printing technology has emerged as a well-developed method to produce parts with considerably low cost and yet with high precision (<100 µm). Recent literature has shown that the 3D-printing technology can be exploited to fabricate a magic-angle spinning (MAS) system in solid-state nuclear magnetic resonance (NMR) spectroscopy. In particular, it was demonstrated that advanced industry-grade 3D printers could fabricate 3.2 mm MAS drive caps with intricate features, and the caps were shown to spin > 20 kHz. Here, we show that not only lab-affordable benchtop 3D printers can produce 3.2 mm drive caps with a similar quality as the commercialized version, but also smaller 2.5 mm and 1.3 mm MAS drive caps-despite a slight compromise in performance. All in-house fabricated drive caps (1.3 to 7 mm) can be consistently reproduced (>90 %) and achieve excellent spinning performances. In summary, the > 3.2 mm systems have similar performances as the commercial systems, while the 2.5- and 1.3-mm caps can spin up to 26 kHz ± 2 Hz, and 46 kHz ± 1 Hz, respectively. The low-cost and fast in-house fabrication of MAS drive caps allows easy prototyping of new MAS drive cap models and, possibly, new NMR applications. For instance, we have fabricated a 4 mm drive cap with a center hole that could allow better light penetration or sample insertion during MAS. Besides, an added groove design on the drive cap allows an airtight seal suitable for probing air- or moisture-sensitive materials. Moreover, the 3D-printed cap was shown to be robust for low-temperature MAS experiments at âˆ¼ 100 K, making it suitable for DNP experiments.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Magn Reson Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2023 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Magn Reson Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2023 Tipo del documento: Article País de afiliación: Francia