Your browser doesn't support javascript.
loading
A Superconducting Micro-Magnetometer for Quantum Vortex in Superconducting Nanoflakes.
Bi, Xiangyu; Tian, Feifan; Chen, Ganyu; Li, Zeya; Qin, Feng; Lv, Yang-Yang; Huang, Junwei; Qiu, Caiyu; Ao, Lingyi; Chen, Yanbin; Gu, Genda; Chen, Yanfeng; Yuan, Hongtao.
Afiliación
  • Bi X; National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210000, P. R. China.
  • Tian F; National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210000, P. R. China.
  • Chen G; National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210000, P. R. China.
  • Li Z; National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210000, P. R. China.
  • Qin F; National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210000, P. R. China.
  • Lv YY; National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210000, P. R. China.
  • Huang J; National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210000, P. R. China.
  • Qiu C; National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210000, P. R. China.
  • Ao L; National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210000, P. R. China.
  • Chen Y; National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210000, P. R. China.
  • Gu G; Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
  • Chen Y; National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210000, P. R. China.
  • Yuan H; National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210000, P. R. China.
Adv Mater ; 35(19): e2211409, 2023 May.
Article en En | MEDLINE | ID: mdl-36808146
ABSTRACT
Superconducting quantum interferometer device (SQUID) plays a key role in understanding electromagnetic properties and emergent phenomena in quantum materials. The technological appeal of SQUID is that its detection accuracy for the electromagnetic signal can precisely reach the quantum level of a single magnetic flux. However, conventional SQUID techniques normally can only be applied to a bulky sample and do not have the capability to probe the magnetic properties of micro-scale samples with small magnetic signals. Herein, it is demonstrated that, based on a specially designed superconducting nano-hole array, the contactless detection of magnetic properties and quantized vortices in micro-sized superconducting nanoflakes is realized. An anomalous hysteresis loop and a suppression of Little-Parks oscillation are observed in the detected magnetoresistance signal, which originates from the disordered distribution of the pinned vortices in Bi2 Sr2 CaCu2 O8+δ . Therefore, the density of pinning centers of the quantized vortices on such micro-sized superconducting samples can be quantitatively evaluated, which is technically inaccessible for conventional SQUID detection. The superconducting micro-magnetometer provides a new approach to exploring mesoscopic electromagnetic phenomena of quantum materials.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2023 Tipo del documento: Article