Your browser doesn't support javascript.
loading
Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood.
Safir, Fareeha; Vu, Nhat; Tadesse, Loza F; Firouzi, Kamyar; Banaei, Niaz; Jeffrey, Stefanie S; Saleh, Amr A E; Khuri-Yakub, Butrus Pierre T; Dionne, Jennifer A.
Afiliación
  • Safir F; *Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.
  • Vu N; Pumpkinseed Technologies, Inc., Palo Alto, California 94306, United States.
  • Tadesse LF; Department of Bioengineering, Stanford University School of Medicine and School of Engineering, Stanford, California 94305, United States.
  • Firouzi K; E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, United States.
  • Banaei N; Department of Pathology, Stanford University School of Medicine, Stanford, 94305 California, United States.
  • Jeffrey SS; Clinical Microbiology Laboratory, Stanford Health Care, Palo Alto, California 94304, United States.
  • Saleh AAE; Department of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California 94305, United States.
  • Khuri-Yakub BPT; Department of Surgery, Stanford University School of Medicine, Stanford, California 94305, United States.
  • Dionne JA; Department of Engineering Mathematics and Physics, Cairo University, Cairo 12613, Egypt.
Nano Lett ; 23(6): 2065-2073, 2023 03 22.
Article en En | MEDLINE | ID: mdl-36856600
ABSTRACT
Identifying pathogens in complex samples such as blood, urine, and wastewater is critical to detect infection and inform optimal treatment. Surface-enhanced Raman spectroscopy (SERS) and machine learning (ML) can distinguish among multiple pathogen species, but processing complex fluid samples to sensitively and specifically detect pathogens remains an outstanding challenge. Here, we develop an acoustic bioprinter to digitize samples into millions of droplets, each containing just a few cells, which are identified with SERS and ML. We demonstrate rapid printing of 2 pL droplets from solutions containing S. epidermidis, E. coli, and blood; when they are mixed with gold nanorods (GNRs), SERS enhancements of up to 1500× are achieved.We then train a ML model and achieve ≥99% classification accuracy from cellularly pure samples and ≥87% accuracy from cellularly mixed samples. We also obtain ≥90% accuracy from droplets with pathogenblood cell ratios <1. Our combined bioprinting and SERS platform could accelerate rapid, sensitive pathogen detection in clinical, environmental, and industrial settings.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Nanopartículas del Metal / Bioimpresión Tipo de estudio: Diagnostic_studies Idioma: En Revista: Nano Lett Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Nanopartículas del Metal / Bioimpresión Tipo de estudio: Diagnostic_studies Idioma: En Revista: Nano Lett Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos