Your browser doesn't support javascript.
loading
Communication dynamics in the human connectome shape the cortex-wide propagation of direct electrical stimulation.
Seguin, Caio; Jedynak, Maciej; David, Olivier; Mansour, Sina; Sporns, Olaf; Zalesky, Andrew.
Afiliación
  • Seguin C; Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA. Electronic address: caio.seguin@unimelb.edu.au.
  • Jedynak M; Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France.
  • David O; Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France.
  • Mansour S; Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.
  • Sporns O; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Cognitive Science Program, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Network Science Institute, Indiana University, Bloomington, IN, USA.
  • Zalesky A; Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.
Neuron ; 111(9): 1391-1401.e5, 2023 05 03.
Article en En | MEDLINE | ID: mdl-36889313
ABSTRACT
Communication between gray matter regions underpins all facets of brain function. We study inter-areal communication in the human brain using intracranial EEG recordings, acquired following 29,055 single-pulse direct electrical stimulations in a total of 550 individuals across 20 medical centers (average of 87 ± 37 electrode contacts per subject). We found that network communication models-computed on structural connectivity inferred from diffusion MRI-can explain the causal propagation of focal stimuli, measured at millisecond timescales. Building on this finding, we show that a parsimonious statistical model comprising structural, functional, and spatial factors can accurately and robustly predict cortex-wide effects of brain stimulation (R2=46% in data from held-out medical centers). Our work contributes toward the biological validation of concepts in network neuroscience and provides insight into how connectome topology shapes polysynaptic inter-areal signaling. We anticipate that our findings will have implications for research on neural communication and the design of brain stimulation paradigms.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Conectoma Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Neuron Asunto de la revista: NEUROLOGIA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Conectoma Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Neuron Asunto de la revista: NEUROLOGIA Año: 2023 Tipo del documento: Article