Sulfur dioxide improves the thermotolerance of maize seedlings by regulating salicylic acid biosynthesis.
Ecotoxicol Environ Saf
; 254: 114746, 2023 Apr 01.
Article
en En
| MEDLINE
| ID: mdl-36905845
Heat stress (HS) has become a serious threat to crop growth and yield. Sulfur dioxide (SO2) is being verified as a signal molecule in regulating the plant stress response. However, it is unknown whether SO2 plays a significant role in the plant heat stress response (HSR). Herein, maize seedlings were pretreated with various concentrations of SO2 and then kept at 45 °C for heat stress treatment, aiming to study the effect of SO2 pretreatment on HSR in maize by phenotypic, physiological, and biochemical analyses. It was found that SO2 pretreatment greatly improved the thermotolerance of maize seedlings. The SO2-pretreated seedlings showed 30-40% lower ROS accumulation and membrane peroxidation, but 55-110% higher activities of antioxidant enzymes than the distilled water-pretreated seedlings under heat stress. Interestingly, endogenous salicylic acid (SA) levels were increased by â¼85% in SO2-pretreated seedlings, as revealed by phytohormone analyses. Furthermore, the SA biosynthesis inhibitor paclobutrazol markedly reduced SA levels and attenuated SO2-triggered thermotolerance of maize seedlings. Meanwhile, transcripts of several SA biosynthesis and signaling, and heat stress-responsive genes in SO2-pretreated seedlings were significantly elevated under HS. These data have demonstrated that SO2 pretreatment increased endogenous SA levels, which activated the antioxidant machinery and strengthened the stress defense system, thereby improving the thermotolerance of maize seedlings under HS. Our current study provides a new strategy for mitigating heat stress damage for safe crop production.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Termotolerancia
/
Antioxidantes
Idioma:
En
Revista:
Ecotoxicol Environ Saf
Año:
2023
Tipo del documento:
Article