Your browser doesn't support javascript.
loading
Unraveling the effects of inter-site Hubbard interactions in spinel Li-ion cathode materials.
Timrov, Iurii; Kotiuga, Michele; Marzari, Nicola.
Afiliación
  • Timrov I; Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. iurii.timrov@epfl.ch.
  • Kotiuga M; Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. iurii.timrov@epfl.ch.
  • Marzari N; Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. iurii.timrov@epfl.ch.
Phys Chem Chem Phys ; 25(13): 9061-9072, 2023 Mar 29.
Article en En | MEDLINE | ID: mdl-36919455
ABSTRACT
Accurate first-principles predictions of the structural, electronic, magnetic, and electrochemical properties of cathode materials can be key in the design of novel efficient Li-ion batteries. Spinel-type cathode materials LixMn2O4 and LixMn1.5Ni0.5O4 are promising candidates for Li-ion battery technologies, but they present serious challenges when it comes to their first-principles modeling. Here, we use density-functional theory with extended Hubbard functionals-DFT+U+V with on-site U and inter-site V Hubbard interactions-to study the properties of these transition-metal oxides. The Hubbard parameters are computed from first-principles using density-functional perturbation theory. We show that while U is crucial to obtain the right trends in properties of these materials, V is essential for a quantitative description of the structural and electronic properties, as well as the Li-intercalation voltages. This work paves the way for reliable first-principles studies of other families of cathode materials without relying on empirical fitting or calibration procedures.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Suiza