Hybrid De Novo Whole-Genome Assembly, Annotation, and Identification of Secondary Metabolite Gene Clusters in the Ex-Type Strain of Chrysosporium keratinophilum.
J Fungi (Basel)
; 9(4)2023 Mar 23.
Article
en En
| MEDLINE
| ID: mdl-37108844
Chrysosporium is a polyphyletic genus belonging (mostly) to different families of the order Onygenales (Eurotiomycetes, Ascomycota). Certain species, such as Chrysosporium keratinophilum, are pathogenic for animals, including humans, but are also a source of proteolytic enzymes (mainly keratinases) potentially useful in bioremediation. However, only a few studies have been published regarding bioactive compounds, of which the production is mostly unpredictable due to the absence of high-quality genomic sequences. During the development of our study, the genome of the ex-type strain of Chrysosporium keratinophilum, CBS 104.66, was sequenced and assembled using a hybrid method. The results showed a high-quality genome of 25.4 Mbp in size spread across 25 contigs, with an N50 of 2.0 Mb, 34,824 coding sequences, 8002 protein sequences, 166 tRNAs, and 24 rRNAs. The functional annotation of the predicted proteins was performed using InterProScan, and the KEGG pathway mapping using BlastKOALA. The results identified a total of 3529 protein families and 856 superfamilies, which were classified into six levels and 23 KEGG categories. Subsequently, using DIAMOND, we identified 83 pathogen-host interactions (PHI) and 421 carbohydrate-active enzymes (CAZymes). Finally, the analysis using AntiSMASH showed that this strain has a total of 27 biosynthesis gene clusters (BGCs), suggesting that it has a great potential to produce a wide variety of secondary metabolites. This genomic information provides new knowledge that allows for a deeper understanding of the biology of C. keratinophilum, and offers valuable new information for further investigations of the Chrysosporium species and the order Onygenales.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Tipo de estudio:
Diagnostic_studies
Idioma:
En
Revista:
J Fungi (Basel)
Año:
2023
Tipo del documento:
Article
País de afiliación:
España