Deep-Stacked Convolutional Neural Networks for Brain Abnormality Classification Based on MRI Images.
J Digit Imaging
; 36(4): 1460-1479, 2023 08.
Article
en En
| MEDLINE
| ID: mdl-37145248
An automated diagnosis system is crucial for helping radiologists identify brain abnormalities efficiently. The convolutional neural network (CNN) algorithm of deep learning has the advantage of automated feature extraction beneficial for an automated diagnosis system. However, several challenges in the CNN-based classifiers of medical images, such as a lack of labeled data and class imbalance problems, can significantly hinder the performance. Meanwhile, the expertise of multiple clinicians may be required to achieve accurate diagnoses, which can be reflected in the use of multiple algorithms. In this paper, we present Deep-Stacked CNN, a deep heterogeneous model based on stacked generalization to harness the advantages of different CNN-based classifiers. The model aims to improve robustness in the task of multi-class brain disease classification when we have no opportunity to train single CNNs on sufficient data. We propose two levels of learning processes to obtain the desired model. At the first level, different pre-trained CNNs fine-tuned via transfer learning will be selected as the base classifiers through several procedures. Each base classifier has a unique expert-like character, which provides diversity to the diagnosis outcomes. At the second level, the base classifiers are stacked together through neural network, representing the meta-learner that best combines their outputs and generates the final prediction. The proposed Deep-Stacked CNN obtained an accuracy of 99.14% when evaluated on the untouched dataset. This model shows its superiority over existing methods in the same domain. It also requires fewer parameters and computations while maintaining outstanding performance.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Encefalopatías
/
Redes Neurales de la Computación
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
J Digit Imaging
Asunto de la revista:
DIAGNOSTICO POR IMAGEM
/
INFORMATICA MEDICA
/
RADIOLOGIA
Año:
2023
Tipo del documento:
Article
País de afiliación:
Indonesia