Your browser doesn't support javascript.
loading
Deep-Stacked Convolutional Neural Networks for Brain Abnormality Classification Based on MRI Images.
Rumala, Dewinda Julianensi; van Ooijen, Peter; Rachmadi, Reza Fuad; Sensusiati, Anggraini Dwi; Purnama, I Ketut Eddy.
Afiliación
  • Rumala DJ; Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
  • van Ooijen P; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
  • Rachmadi RF; Data Science Center in Health (DASH), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
  • Sensusiati AD; Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
  • Purnama IKE; Department of Computer Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
J Digit Imaging ; 36(4): 1460-1479, 2023 08.
Article en En | MEDLINE | ID: mdl-37145248
An automated diagnosis system is crucial for helping radiologists identify brain abnormalities efficiently. The convolutional neural network (CNN) algorithm of deep learning has the advantage of automated feature extraction beneficial for an automated diagnosis system. However, several challenges in the CNN-based classifiers of medical images, such as a lack of labeled data and class imbalance problems, can significantly hinder the performance. Meanwhile, the expertise of multiple clinicians may be required to achieve accurate diagnoses, which can be reflected in the use of multiple algorithms. In this paper, we present Deep-Stacked CNN, a deep heterogeneous model based on stacked generalization to harness the advantages of different CNN-based classifiers. The model aims to improve robustness in the task of multi-class brain disease classification when we have no opportunity to train single CNNs on sufficient data. We propose two levels of learning processes to obtain the desired model. At the first level, different pre-trained CNNs fine-tuned via transfer learning will be selected as the base classifiers through several procedures. Each base classifier has a unique expert-like character, which provides diversity to the diagnosis outcomes. At the second level, the base classifiers are stacked together through neural network, representing the meta-learner that best combines their outputs and generates the final prediction. The proposed Deep-Stacked CNN obtained an accuracy of 99.14% when evaluated on the untouched dataset. This model shows its superiority over existing methods in the same domain. It also requires fewer parameters and computations while maintaining outstanding performance.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encefalopatías / Redes Neurales de la Computación Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Digit Imaging Asunto de la revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA / RADIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Indonesia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encefalopatías / Redes Neurales de la Computación Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Digit Imaging Asunto de la revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA / RADIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Indonesia