Your browser doesn't support javascript.
loading
Predicting cellular responses to complex perturbations in high-throughput screens.
Lotfollahi, Mohammad; Klimovskaia Susmelj, Anna; De Donno, Carlo; Hetzel, Leon; Ji, Yuge; Ibarra, Ignacio L; Srivatsan, Sanjay R; Naghipourfar, Mohsen; Daza, Riza M; Martin, Beth; Shendure, Jay; McFaline-Figueroa, Jose L; Boyeau, Pierre; Wolf, F Alexander; Yakubova, Nafissa; Günnemann, Stephan; Trapnell, Cole; Lopez-Paz, David; Theis, Fabian J.
Afiliación
  • Lotfollahi M; Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Computational Biology, Munich, Germany.
  • Klimovskaia Susmelj A; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
  • De Donno C; Meta AI, Paris, France.
  • Hetzel L; Swiss Data Science Center, Zurich, Switzerland.
  • Ji Y; Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Computational Biology, Munich, Germany.
  • Ibarra IL; School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
  • Srivatsan SR; Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Computational Biology, Munich, Germany.
  • Naghipourfar M; Department of Mathematics, Technical University of Munich, Munich, Germany.
  • Daza RM; Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Computational Biology, Munich, Germany.
  • Martin B; School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
  • Shendure J; Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Computational Biology, Munich, Germany.
  • McFaline-Figueroa JL; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
  • Boyeau P; Department of Bioengineering, University of California, Berkeley, CA, USA.
  • Wolf FA; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
  • Yakubova N; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
  • Günnemann S; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
  • Trapnell C; Howard Hughes Medical Institute, Seattle, WA, USA.
  • Lopez-Paz D; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
  • Theis FJ; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
Mol Syst Biol ; 19(6): e11517, 2023 06 12.
Article en En | MEDLINE | ID: mdl-37154091
ABSTRACT
Recent advances in multiplexed single-cell transcriptomics experiments facilitate the high-throughput study of drug and genetic perturbations. However, an exhaustive exploration of the combinatorial perturbation space is experimentally unfeasible. Therefore, computational methods are needed to predict, interpret, and prioritize perturbations. Here, we present the compositional perturbation autoencoder (CPA), which combines the interpretability of linear models with the flexibility of deep-learning approaches for single-cell response modeling. CPA learns to in silico predict transcriptional perturbation response at the single-cell level for unseen dosages, cell types, time points, and species. Using newly generated single-cell drug combination data, we validate that CPA can predict unseen drug combinations while outperforming baseline models. Additionally, the architecture's modularity enables incorporating the chemical representation of the drugs, allowing the prediction of cellular response to completely unseen drugs. Furthermore, CPA is also applicable to genetic combinatorial screens. We demonstrate this by imputing in silico 5,329 missing combinations (97.6% of all possibilities) in a single-cell Perturb-seq experiment with diverse genetic interactions. We envision CPA will facilitate efficient experimental design and hypothesis generation by enabling in silico response prediction at the single-cell level and thus accelerate therapeutic applications using single-cell technologies.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Biología Computacional / Perfilación de la Expresión Génica / Ensayos Analíticos de Alto Rendimiento / Análisis de Expresión Génica de una Sola Célula Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Mol Syst Biol Asunto de la revista: BIOLOGIA MOLECULAR / BIOTECNOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Biología Computacional / Perfilación de la Expresión Génica / Ensayos Analíticos de Alto Rendimiento / Análisis de Expresión Génica de una Sola Célula Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Mol Syst Biol Asunto de la revista: BIOLOGIA MOLECULAR / BIOTECNOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Alemania