Your browser doesn't support javascript.
loading
A consensus score to combine inferences from multiple centres.
Haselimashhadi, Hamed; Babalola, Kolawole; Wilson, Robert; Groza, Tudor; Muñoz-Fuentes, Violeta.
Afiliación
  • Haselimashhadi H; European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, UK. hamedhm@ebi.ac.uk.
  • Babalola K; European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, UK.
  • Wilson R; European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, UK.
  • Groza T; European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, UK.
  • Muñoz-Fuentes V; European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, UK.
Mamm Genome ; 34(3): 379-388, 2023 09.
Article en En | MEDLINE | ID: mdl-37154937
Experiments in which data are collected by multiple independent resources, including multicentre data, different laboratories within the same centre or with different operators, are challenging in design, data collection and interpretation. Indeed, inconsistent results across the resources are possible. In this paper, we propose a statistical solution for the problem of multi-resource consensus inferences when statistical results from different resources show variation in magnitude, directionality, and significance. Our proposed method allows combining the corrected p-values, effect sizes and the total number of centres into a global consensus score. We apply this method to obtain a consensus score for data collected by the International Mouse Phenotyping Consortium (IMPC) across 11 centres. We show the application of this method to detect sexual dimorphism in haematological data and discuss the suitability of the methodology.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Consenso Tipo de estudio: Guideline Límite: Animals Idioma: En Revista: Mamm Genome Asunto de la revista: GENETICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Consenso Tipo de estudio: Guideline Límite: Animals Idioma: En Revista: Mamm Genome Asunto de la revista: GENETICA Año: 2023 Tipo del documento: Article