Your browser doesn't support javascript.
loading
Piperlongumine conquers temozolomide chemoradiotherapy resistance to achieve immune cure in refractory glioblastoma via boosting oxidative stress-inflamation-CD8+-T cell immunity.
Liu, Feng; Zhou, Qian; Jiang, Hai-Feng; Zhang, Ting-Ting; Miao, Cheng; Xu, Xiao-Hong; Wu, Jia-Xing; Yin, Song-Lin; Xu, Shi-Jie; Peng, Jing-Yi; Gao, Pan-Pan; Cao, Xuan; Pan, Feng; He, Ximiao; Chen, Xiao Qian.
Afiliación
  • Liu F; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China.
  • Zhou Q; Department of Pharmacy, First Affiliated Hospital of Yangtze University, Jingzhou, 434000, China.
  • Jiang HF; Department of Physiology, School of Basic Medicine, Tongji Medical College, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China.
  • Zhang TT; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China.
  • Miao C; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China.
  • Xu XH; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China.
  • Wu JX; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China.
  • Yin SL; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China.
  • Xu SJ; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China.
  • Peng JY; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China.
  • Gao PP; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China.
  • Cao X; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China.
  • Pan F; Department of Basic Medical Science, Medical College, Taizhou University, Taizhou, 318000, China. caoxuanwhu@126.com.
  • He X; Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China. panfeng@hust.edu.cn.
  • Chen XQ; Department of Physiology, School of Basic Medicine, Tongji Medical College, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China. ximiaohe@hust.edu.cn.
J Exp Clin Cancer Res ; 42(1): 118, 2023 May 10.
Article en En | MEDLINE | ID: mdl-37161450
ABSTRACT

BACKGROUND:

The failure of novel therapies effective in preclinical animal models largely reflects the fact that current models do not really mimic the pathological/therapeutic features of glioblastoma (GBM), in which the most effective temozolomide chemoradiotherapy (RT/TMZ) regimen can only slightly extend survival. How to improve RT/TMZ efficacy remains a major challenge in clinic.

METHODS:

Syngeneic G422TN-GBM model mice were subject to RT/TMZ, surgery, piperlongumine (PL), αPD1, glutathione. Metabolomics or transcriptomics data from G422TN-GBM and human GBM were used for gene enrichment analysis and estimation of ROS generation/scavenging balance, oxidative stress damage, inflammation and immune cell infiltration. Overall survival, bioluminescent imaging, immunohistochemistry, and immunofluorescence staining were used to examine therapeutic efficacy and mechanisms of action.

RESULTS:

Here we identified that glutathione metabolism was most significantly altered in metabolomics analysis upon RT/TMZ therapies in a truly refractory and reliable mouse triple-negative GBM (G422TN) preclinical model. Consistently, ROS generators/scavengers were highly dysregulated in both G422TN-tumor and human GBM. The ROS-inducer PL synergized surgery/TMZ, surgery/RT/TMZ or RT/TMZ to achieve long-term survival (LTS) in G422TN-mice, but only one LTS-mouse from RT/TMZ/PL therapy passed the rechallenging phase (immune cure). Furthermore, the immunotherapy of RT/TMZ/PL plus anti-PD-1 antibody (αPD1) doubled LTS (50%) and immune-cured (25%) mice. Glutathione completely abolished PL-synergistic effects. Mechanistically, ROS reduction was associated with RT/TMZ-resistance. PL restored ROS level (mainly via reversing Duox2/Gpx2), activated oxidative stress/inflammation/immune responses signature genes, reduced cancer cell proliferation/invasion, increased apoptosis and CD3+/CD4+/CD8+ T-lymphocytes in G422TN-tumor on the basis of RT/TMZ regimen.

CONCLUSION:

Our findings demonstrate that PL reverses RT/TMZ-reduced ROS and synergistically resets tumor microenvironment to cure GBM. RT/TMZ/PL or RT/TMZ/PL/αPD1 exacts effective immune cure in refractory GBM, deserving a priority for clinical trials.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Glioblastoma / Glioma Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: J Exp Clin Cancer Res Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Glioblastoma / Glioma Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: J Exp Clin Cancer Res Año: 2023 Tipo del documento: Article País de afiliación: China