Your browser doesn't support javascript.
loading
HyperSpec: Ultrafast Mass Spectra Clustering in Hyperdimensional Space.
Xu, Weihong; Kang, Jaeyoung; Bittremieux, Wout; Moshiri, Niema; Rosing, Tajana.
Afiliación
  • Xu W; Department of Computer Science Engineering, University of California, San Diego, La Jolla, California 92093, United States.
  • Kang J; Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093, United States.
  • Bittremieux W; Department of Computer Science, University of Antwerp, 2020 Antwerpen, Belgium.
  • Moshiri N; Department of Computer Science Engineering, University of California, San Diego, La Jolla, California 92093, United States.
  • Rosing T; Department of Computer Science Engineering, University of California, San Diego, La Jolla, California 92093, United States.
J Proteome Res ; 22(6): 1639-1648, 2023 06 02.
Article en En | MEDLINE | ID: mdl-37166120
As current shotgun proteomics experiments can produce gigabytes of mass spectrometry data per hour, processing these massive data volumes has become progressively more challenging. Spectral clustering is an effective approach to speed up downstream data processing by merging highly similar spectra to minimize data redundancy. However, because state-of-the-art spectral clustering tools fail to achieve optimal runtimes, this simply moves the processing bottleneck. In this work, we present a fast spectral clustering tool, HyperSpec, based on hyperdimensional computing (HDC). HDC shows promising clustering capability while only requiring lightweight binary operations with high parallelism that can be optimized using low-level hardware architectures, making it possible to run HyperSpec on graphics processing units to achieve extremely efficient spectral clustering performance. Additionally, HyperSpec includes optimized data preprocessing modules to reduce the spectrum preprocessing time, which is a critical bottleneck during spectral clustering. Based on experiments using various mass spectrometry data sets, HyperSpec produces results with comparable clustering quality as state-of-the-art spectral clustering tools while achieving speedups by orders of magnitude, shortening the clustering runtime of over 21 million spectra from 4 h to only 24 min.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Péptidos / Algoritmos Idioma: En Revista: J Proteome Res Asunto de la revista: BIOQUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Péptidos / Algoritmos Idioma: En Revista: J Proteome Res Asunto de la revista: BIOQUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos