Your browser doesn't support javascript.
loading
In-cell kinetic stability is an essential trait in metallo-ß-lactamase evolution.
González, Lisandro J; Bahr, Guillermo; González, Mariano M; Bonomo, Robert A; Vila, Alejandro J.
Afiliación
  • González LJ; Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina.
  • Bahr G; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
  • González MM; Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina.
  • Bonomo RA; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
  • Vila AJ; Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina.
Nat Chem Biol ; 19(9): 1116-1126, 2023 09.
Article en En | MEDLINE | ID: mdl-37188957
ABSTRACT
Protein stability is an essential property for biological function. In contrast to the vast knowledge on protein stability in vitro, little is known about the factors governing in-cell stability. Here we show that the metallo-ß-lactamase (MBL) New Delhi MBL-1 (NDM-1) is a kinetically unstable protein on metal restriction that has evolved by acquiring different biochemical traits that optimize its in-cell stability. The nonmetalated (apo) NDM-1 is degraded by the periplasmic protease Prc that recognizes its partially unstructured C-terminal domain. Zn(II) binding renders the protein refractory to degradation by quenching the flexibility of this region. Membrane anchoring makes apo-NDM-1 less accessible to Prc and protects it from DegP, a cellular protease degrading misfolded, nonmetalated NDM-1 precursors. NDM variants accumulate substitutions at the C terminus that quench its flexibility, enhancing their kinetic stability and bypassing proteolysis. These observations link MBL-mediated resistance with the essential periplasmic metabolism, highlighting the importance of the cellular protein homeostasis.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Péptido Hidrolasas / Beta-Lactamasas Idioma: En Revista: Nat Chem Biol Asunto de la revista: BIOLOGIA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Argentina

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Péptido Hidrolasas / Beta-Lactamasas Idioma: En Revista: Nat Chem Biol Asunto de la revista: BIOLOGIA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Argentina